Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth. SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG, which make SHED to have a significant impact on clinical applications. SHED possess higher rates of proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters, and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation and banking method, the current development of SHED in regenerative medicine and tissue engineering in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574888X14666191018122109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!