Enzyme recruitment is a fundamental evolutionary driver of modern metabolism. We see evidence of recruitment at work in the metabolic Molecular Ancestry Networks (MANET) database, an online resource that integrates data from KEGG, SCOP and structural phylogenomic reconstruction. The database, which was introduced in 2006, traces the deep history of the structural domains of enzymes in metabolic pathways. Here we release version 3.0 of MANET, which updates data from KEGG and SCOP, links enzyme and PDB information with PDBsum, and traces evolutionary information of domains defined at fold family level of SCOP classification in metabolic subnetwork diagrams. Compared to SCOP folds used in the previous versions, fold families are cohesive units of functional similarity that are highly conserved at sequence level and offer a 10-fold increase of data entries. We surveyed enzymatic, functional and catalytic site distributions among superkingdoms showing that ancient enzymatic innovations followed a biphasic temporal pattern of diversification typical of module innovation. We grouped enzymatic activities of MANET into a hierarchical system of subnetworks and mesonetworks matching KEGG classification. The evolutionary growth of these modules of metabolic activity was studied using bipartite networks and their one-mode projections at enzyme, subnetwork and mesonetwork levels of organization. Evolving metabolic networks revealed patterns of enzyme sharing that transcended mesonetwork boundaries and supported the patchwork model of metabolic evolution. We also explored the scale-freeness, randomness and small-world properties of evolving networks as possible organizing principles of network growth and diversification. The network structure shows an increase in hierarchical modularity and scale-free behavior as metabolic networks unfold in evolutionary time. Remarkably, this evolutionary constraint on structure was stronger at lower levels of metabolic organization. Evolving metabolic structure reveals a 'principle of granularity', an evolutionary increase of the cohesiveness of lower-level parts of a hierarchical system. MANET is available at http://manet.illinois.edu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812854 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224201 | PLOS |
EXCLI J
November 2024
Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.
Since the outbreak of the COVID-19 pandemic, there has been a global surge in patients presenting with prolonged or late-onset debilitating sequelae of SARS-CoV-2 infection, colloquially termed long COVID. This narrative review provides an updated synthesis of the latest evidence on the neurological manifestations of long COVID, discussing its clinical phenotypes, underlying pathophysiology, while also presenting the current state of diagnostic and therapeutic approaches. Approximately one-third of COVID-19 survivors experience prolonged neurological sequelae that persist for at least 12-months post-infection, adversely affecting patients' quality of life.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China. Electronic address:
The fermented foods microbiota, whose community structures evolve through a succession of different microbial groups, play a central role in fermented food production. The texture and flavor, functions, shelf-life and safety, are largely determined by the interactions among bacteria and yeast within these communities. Although much indispensable work has described the microbial composition and succession in various fermentation foods, yet the specific microbial interactions involved are not well understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637.
Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).
Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!