The mechanisms leading to the low-grade inflammation observed during obesity are not fully understood. Seeking the initiating events, we tested the hypothesis that the intestine could be damaged by repeated lipid supply and therefore participate in inflammation. In mice, 1-5 palm oil gavages increased intestinal permeability via decreased expression and mislocalization of junctional proteins at the cell-cell contacts; altered the intestinal bacterial species by decreasing the abundance of Akkermansia muciniphila, segmented filamentous bacteria, and Clostridium leptum; and increased inflammatory cytokine expression. This was further studied in human intestinal epithelial Caco-2/TC7 cells using the two main components of palm oil, i.e., palmitic and oleic acid. Saturated palmitic acid impaired paracellular permeability and junctional protein localization, and induced inflammatory cytokine expression in the cells, but unsaturated oleic acid did not. Inhibiting de novo ceramide synthesis prevented part of these effects. Altogether, our data show that short exposure to palm oil or palmitic acid induces intestinal dysfunctions targeting barrier integrity and inflammation. Excessive palm oil consumption could be an early player in the gut alterations observed in metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2019.158530DOI Listing

Publication Analysis

Top Keywords

palm oil
16
palmitic acid
12
inflammatory cytokine
12
cytokine expression
8
oil palmitic
8
oleic acid
8
palmitic
4
acid damages
4
damages gut
4
gut epithelium
4

Similar Publications

Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.

View Article and Find Full Text PDF

The analysis of mineral oil aromatic hydrocarbons (MOAH) in vegetable oils is currently associated with high uncertainty due to various factors ranging from sample preparation to data interpretation. One significant factor is the coelution of biogenic compounds of terpenic origin with the MOAH fraction during chromatographic analysis. The common purification method is epoxidation, a chemical reaction that changes the polarity of the interferences, allowing their separation from MOAH.

View Article and Find Full Text PDF

Smallholder farmers produce over 40% of global palm oil, the world's most traded and controversial vegetable oil. Awareness of the effects of palm oil production on ecosystems and human communities has increased drastically in recent years, with ever louder calls for the private and public sector to develop programs to support sustainable cultivation by smallholder farmers. To effectively influence smallholder practices and ensure positive social outcomes, such schemes must consider the variety in perspectives of farmers and align with their priorities.

View Article and Find Full Text PDF

A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.

View Article and Find Full Text PDF

Tropical peatlands are significant sources of methane (CH₄), but their contribution to the global CH₄ budget remains poorly quantified due to the lack of long-term, continuous and high-frequency flux measurements. To address this gap, we measured net ecosystem CH exchange (NEE-CH) using eddy covariance technique throughout the conversion of a tropical peat swamp forest to an oil palm plantation. This encompassed the periods before, during and after conversion periods from 2014 to 2020, during which substantial environmental shifts were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!