The objective of this work was to identify an enabling formulation for an insoluble compound ZL006 with potency of boosting leukocytes after chemotherapy. The low oral bioavailability (<1%) of its conventional suspension was the hurdle for the preclinical evaluation via oral administration. Preformulation studies including physical form screening and physicochemical properties determination were performed. Polymorphism was observed, and the more thermodynamically stable form was selected for further studies. ZL006 showed certain supersaturation solubility, although the thermodynamic solubility in FaSSIF was low, which indicated the supersaturating formulation might work. Parameter sensitivity analysis by in silico simulation predicted that in vivo exposure was sensitive to solubility, while particle size reduction would have limited impact on exposure. Based on in silico prediction and the understanding of the molecule from preformulation studies, solid dispersion approach was selected. A preliminary dose escalation pharmacokinetic study in rats demonstrated that in vivo exposure increased in dose-proportional manner from 12.5 mg/kg to 50 mg/kg with around 50% oral bioavailability after oral dosing of the solid dispersion. This work showed that combination of preformulation studies and in silico simulation could efficiently guide the selection of enabling formulation, which could save resources at preclinical stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2019.10.023 | DOI Listing |
BMC Chem
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
The development of a newly fabricated ion-selective electrode (ISE) solid-contacted type for the determination of prucalopride succinate represents a significant advancement in analytical chemistry, particularly in the context of green chemistry principles. The optimization process involved numerous trials to ensure the selection of a cation exchanger and ionophore that offer high sensitivity and selectivity for prucalopride succinate. Through these optimization trials, sodium tetrakis was identified as the most suitable cation exchanger, while calix [8] arene demonstrated the highest affinity towards prucalopride succinate as the ionophore.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Tarhana, a traditional fermented food made from cereal flours, yogurt, vegetables, and spices, is recognized for its rich nutritional value and prolonged shelf life. This study investigated the effect of pea protein isolate (PPI) enrichment on select compositional, physical, techno-functional and nutritional properties of tarhana. Six different formulations were prepared by blending PPI and wheat flour (WF) in varying PPI: WF ratios from 0:100 (control) to 100:0.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Sprayable hydrogels have emerged as a transformative innovation in biomedical technology, offering a versatile, efficient, and minimally invasive platform for various clinical applications. They form gels upon tissue contact, enabling seamless application on even complex surfaces. This property is especially useful in wound care, drug delivery, and tissue engineering, where localized and sustained release of therapeutics is essential.
View Article and Find Full Text PDFMater Today Bio
February 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.
View Article and Find Full Text PDFFront Oncol
December 2024
Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Lung cancer possesses the highest incidence and mortality rates among malignancies globally. Despite substantial advancements in oncology, it is frequently diagnosed at an advanced stage, resulting in a poor prognosis. Over recent decades, the swift progress of nanotechnology has precipitated the extensive utilization of nanomaterials as carriers in cancer diagnosis and therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!