Low Temperature Kinetics of the Reaction Between Methanol and the CN Radical.

J Phys Chem A

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 , F-35000 Rennes , France.

Published: November 2019

Methanol (CHOH) is considered by astronomers to be the simplest complex organic molecule (COM) and has been detected in various astrophysical environments, including protoplanetary disks, comets, and the interstellar medium (ISM). Studying the reactivity of methanol at low temperatures will aid our understanding of the formation of other complex and potentially prebiotic molecules. A major destruction route for many neutral COMs, including methanol, is via their reactions with radicals such as CN, which is ubiquitous in space. Here, we study the kinetics of the reaction between methanol and the CN radical using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with Pulsed-Laser Photolysis-Laser-Induced Fluorescence (PLP-LIF). Electronic structure calculations were also performed to identify the exothermic channels through which this reaction can proceed. Our results for the rate coefficient are represented by the modified Arrhenius equation, () = 1.26 × 10(/300 K) exp(-5.4 K/), and display a negative temperature dependence over the temperature range 16.7-296 K, which is typical of what has been seen previously for other radical-neutral reactions that do not possess potential energy barriers. The rate coefficients obtained at room temperature strongly disagree with a previous kinetics study, which is currently available in the Kinetics Database for Astrochemistry (KIDA) and therefore used in some astrochemical models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b08472DOI Listing

Publication Analysis

Top Keywords

kinetics reaction
8
reaction methanol
8
methanol radical
8
kinetics
5
methanol
5
low temperature
4
temperature kinetics
4
reaction
4
radical methanol
4
methanol choh
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!