Improving the Flow Cytometry-based Detection of the Cellular Uptake of Gold Nanoparticles.

Anal Chem

Laser Dynamics Lab (LDL), School of Chemistry and Biochemistry , Georgia Institute of Technology, Atlanta , Georgia 30332-0400 , United States.

Published: November 2019

AI Article Synopsis

  • There is a growing need for a better way to measure how gold nanoparticles (AuNPs) are taken up by cells due to their many uses in biology.
  • Currently, flow cytometry uses a 488 nm laser to detect AuNPs, but this method isn't very effective because it doesn't optimize the detection of these nanoparticles.
  • The study shows that using lasers with a longer wavelength (red-shifted) significantly improves the detection of AuNPs, specifically in triple negative breast cancer cells.

Article Abstract

Due to the considerable amount of applications of gold nanoparticles (AuNPs) in biological systems, there is a great need for an improved methodology to quantitatively measure the uptake of AuNPs in cells. Flow cytometry has the ability to measure intracellular AuNPs by collecting the light scattering from a large population of live cells through efficient single cell analysis. Traditionally, the side scattering setting of the flow cytometer, which is associated with a 488 nm excitation laser (SSC channel), is used to detect nanoparticle uptake. This method is limited as AuNPs do not have the optimized response when excited with this laser. Here, we reported that the use of more red-shifted excitation lasers will greatly enhance the optical signal needed for the flow cytometry-based detection of AuNSs (26 nm in diameter) and AuNRs (67 nm × 33 nm, length × width) uptake in triple negative breast cancer cells (MDA-MB-231).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02248DOI Listing

Publication Analysis

Top Keywords

flow cytometry-based
8
cytometry-based detection
8
gold nanoparticles
8
improving flow
4
detection cellular
4
uptake
4
cellular uptake
4
uptake gold
4
nanoparticles considerable
4
considerable amount
4

Similar Publications

Flow cytometry-based monitoring of myeloid-derived suppressor cells in the peripheral blood of patients with solid tumors.

Methods Cell Biol

January 2025

Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, Erlangen, Germany.

Myeloid-derived suppressor cells (MDSCs) ameliorate inflammation by inhibiting T cell responses. In pathological conditions, such as autoimmunity, chronic infections or cancer they accumulate in the periphery. In cancer, MDSCs can also be part of the tumor microenvironment and are associated with a worse prognosis and limited response to immunotherapy.

View Article and Find Full Text PDF

Diclofenac etalhyaluronate, an active pharmaceutical ingredient in JOYCLU (JCL), serves as a joint function improvement agent in knee and hip osteoarthritis patients. However, frequent cases of anaphylaxis induced by JCL administration have been reported. Recent clinical research suggests the potential utility of the basophil activation test (BAT) in predicting JCL-induced anaphylaxis.

View Article and Find Full Text PDF

Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first replication cycle in culture were employed in this investigation.

View Article and Find Full Text PDF

Protocol for assessing immune-target cell interactions using a single-cell cytotoxicity assay.

STAR Protoc

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. Electronic address:

Standard flow cytometry-based assays can determine the cytotoxicity of immune effector cells, but it is challenging to monitor the dynamic processes of cytotoxicity. Here, we present a protocol for continuous observation of natural killer (NK) cell-mediated cytotoxicity with microwell arrays using an automated microscope. We describe steps for isolating and labeling primary NK cells, loading cells onto microwell arrays, monitoring target wells, and image analysis.

View Article and Find Full Text PDF

Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!