A concise, asymmetric synthesis of the indole alkaloid (+)-tacamonine is reported involving a stereoselective radical cyclization of a 1-phenylsulfanyl tetrahydro-β-carboline bearing a pendant enoate ester side chain as a key step. In this process, a single stereocenter in the side chain allows for the formation of two stereocenters of the natural product in a highly diastereoselective fashion. Computational investigations of this key cyclization support the experimentally observed outcome and shed light on the factors impacting its stereoselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.9b03308 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
Angew Chem Int Ed Engl
January 2025
The Scripps Research Institute, Department of Chemistry, 10550 North Torrey pines Road, BCC-169, 92037, La Jolla, UNITED STATES OF AMERICA.
Electrochemical, fully stereoselective P(V)-radical hydrophosphorylation of olefins and carbonyl compounds using a P(V) reagent is disclosed. By strategically selecting the anode material, radical reactivity is accessible for alkene hydrophosphorylation whereas a polar pathway operates for ketone hydrophosphorylation. The mechanistic intricacies of these chemoselective transformations were explored in-depth.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!