Synthesis of (+)-Tacamonine via Stereoselective Radical Cyclization.

Org Lett

Department of Chemistry , University of Cape Town, Rondebosch 7701 , Cape Town , South Africa.

Published: November 2019

A concise, asymmetric synthesis of the indole alkaloid (+)-tacamonine is reported involving a stereoselective radical cyclization of a 1-phenylsulfanyl tetrahydro-β-carboline bearing a pendant enoate ester side chain as a key step. In this process, a single stereocenter in the side chain allows for the formation of two stereocenters of the natural product in a highly diastereoselective fashion. Computational investigations of this key cyclization support the experimentally observed outcome and shed light on the factors impacting its stereoselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b03308DOI Listing

Publication Analysis

Top Keywords

stereoselective radical
8
radical cyclization
8
side chain
8
synthesis +-tacamonine
4
+-tacamonine stereoselective
4
cyclization concise
4
concise asymmetric
4
asymmetric synthesis
4
synthesis indole
4
indole alkaloid
4

Similar Publications

Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.

View Article and Find Full Text PDF

Electrifying P(V): Access to Polar and Radical Reactivity.

Angew Chem Int Ed Engl

January 2025

The Scripps Research Institute, Department of Chemistry, 10550 North Torrey pines Road, BCC-169, 92037, La Jolla, UNITED STATES OF AMERICA.

Electrochemical, fully stereoselective P(V)-radical hydrophosphorylation of olefins and carbonyl compounds using a P(V) reagent is disclosed. By strategically selecting the anode material, radical reactivity is accessible for alkene hydrophosphorylation whereas a polar pathway operates for ketone hydrophosphorylation. The mechanistic intricacies of these chemoselective transformations were explored in-depth.

View Article and Find Full Text PDF

In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!