The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145683PMC
http://dx.doi.org/10.1093/nar/gkz1006DOI Listing

Publication Analysis

Top Keywords

folylpolyglutamate synthetase
8
dutp/dttp ratio
8
dna damage
8
dna
5
inactivation folylpolyglutamate
4
synthetase met7
4
met7 genome
4
genome instability
4
instability driven
4
driven increased
4

Similar Publications

Folylpolyglutamate synthetase inactivation in relapsed ALL induces a druggable folate metabolic vulnerability.

Drug Resist Updat

November 2024

Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China; Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Aims: The antifolate methotrexate (MTX) is an anchor drug used in acute lymphoblastic leukemia (ALL) with poorly understood chemoresistance mechanisms in relapse. Herein we find decreased folate polyglutamylation network activities and inactivating FPGS mutations, both of which could induce MTX resistance and folate metabolic vulnerability in relapsed ALL.

Methods: We utilized integrated systems biology analysis of transcriptomic and genomic data from relapse ALL cohorts to infer hidden ALL relapse drivers and related genetic alternations during clonal evolution.

View Article and Find Full Text PDF

Role of Mitochondrial and Cytosolic Folylpolyglutamate Synthetase in One-Carbon Metabolism and Antitumor Efficacy of Mitochondrial-Targeted Antifolates.

Mol Pharmacol

September 2024

Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)

Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol.

View Article and Find Full Text PDF

Background And Purpose: Clinical studies showed that prolonged infusion of methotrexate (MTX) leads to more severe adverse reactions than short infusion of MTX at the same dose. We hypothesized that it is the saturation of folate polyglutamate synthetase (FPGS) at high MTX concentration that limits the intracellular synthesis rate of methotrexate polyglutamate (MTX-PG). Due to a similar accumulation rate, a longer infusion duration may increase the concentration of MTX-PG and, result in more serious adverse reactions.

View Article and Find Full Text PDF

Methotrexate-based PROTACs as DHFR-specific chemical probes.

Cell Chem Biol

February 2024

Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA; Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA. Electronic address:

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR.

View Article and Find Full Text PDF

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!