Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates.

Soft Matter

Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av. E. Bustillo 9500 (R8402AGP), San Carlos de Bariloche Río Negro, Argentina.

Published: November 2019

We analyze the behavior of different elastoplastic models approaching the yielding transition. We propose two kinds of rules for the local yielding events: yielding occurs above the local threshold either at a constant rate or with a rate that increases as the square root of the stress excess. We establish a family of "static" universal critical exponents which do not depend on this dynamic detail of the model rules: in particular, the exponents for the avalanche size distribution P(S) ∼Sf(S/L) and the exponents describing the density of sites at the verge of yielding, which we find to be of the form P(x) ≃P(0) + x with P(0) ∼L controlling the extremal statistics. On the other hand, we discuss "dynamical" exponents that are sensitive to the local yielding rule. We find that, apart form the dynamical exponent z controlling the duration of avalanches, also the flowcurve's (inverse) Herschel-Bulkley exponent β ([small gamma, Greek, dot above]∼ (σ-σ)) enters in this category, and is seen to differ in ½ between the two yielding rate cases. We give analytical support to this numerical observation by calculating the exponent variation in the Hébraud-Lequeux model and finding an identical shift. We further discuss an alternative mean-field approximation to yielding only based on the so-called Hurst exponent of the accumulated mechanical noise signal, which gives good predictions for the exponents extracted from simulations of fully spatial models.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01073dDOI Listing

Publication Analysis

Top Keywords

elastoplastic models
8
yielding
8
local yielding
8
exponents
5
criticality elastoplastic
4
models amorphous
4
amorphous solids
4
solids stress-dependent
4
stress-dependent yielding
4
yielding rates
4

Similar Publications

Elasto-plastic solution for undrained cylindrical cavity expansion in refuse soil.

Sci Rep

December 2024

College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou, 450001, China.

To address geotechnical engineering issues such as pile driving, lateral pressure tests, and static cone penetration tests on increasing number of infrastructure projects being constructed on landfills, an elasto-plastic theoretical solution for the undrained cylindrical cavity expansion in refuse soil is proposed in this paper based on an elasto-plastic constitutive model for refuse soil considering the reinforcement effect of fibers, along with a large deformation theory. The correctness of the results is validated through comparison with existing solutions based on the modified Cam-clay model. The results indicate that the response of columnar pore expansion in refuse soil is significantly different from that in ordinary soil.

View Article and Find Full Text PDF

Numerical Simulation of Electromagnetic Nondestructive Testing Technology for Elasto-Plastic Deformation of Ferromagnetic Materials Based on Magneto-Mechanical Coupling Effect.

Sensors (Basel)

November 2024

Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.

A numerical tool for simulating the detection signals of electromagnetic nondestructive testing technology (ENDT) is of great significance for studying detection mechanisms and improving detection efficiency. However, the quantitative analysis methods for ENDT have not yet been sufficiently studied due to the absence of an effective constitutive model. This paper proposed a new magneto-mechanical model that can reflect the dependence of relative permeability on elasto-plastic deformation and proposed a finite element-infinite element coupling method that can replace the traditional finite element truncation boundary.

View Article and Find Full Text PDF

Slow Voltage Relaxation of Silicon Nanoparticles with a Chemo-Mechanical Core-Shell Model.

ACS Appl Mater Interfaces

December 2024

Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Wilhelm-Runge-Straße 10, Ulm 89081, Germany.

Silicon presents itself as a high-capacity anode material for lithium-ion batteries with a promising future. The high ability for lithiation comes along with massive volume changes and a problematic voltage hysteresis, causing reduced efficiency, detrimental heat generation, and a complicated state-of-charge estimation. During slow cycling, amorphous silicon nanoparticles show a larger voltage hysteresis than after relaxation periods.

View Article and Find Full Text PDF

Ductile and brittle yielding of athermal amorphous solids: A mean-field paradigm beyond the random-field Ising model.

Phys Rev E

October 2024

Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany and Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom.

Amorphous solids can yield in either a ductile or brittle manner under strain: plastic deformation can set in gradually, or abruptly through a macroscopic stress drop. Developing a unified theory describing both ductile and brittle yielding constitutes a fundamental challenge of nonequilibrium statistical physics. Recently, it has been proposed that, in the absence of thermal effects, the nature of the yielding transition is controlled by physics akin to that of the quasistatically driven random field Ising model (RFIM), which has served as the paradigm for understanding the effect of quenched disorder in slowly driven systems with short-ranged interactions.

View Article and Find Full Text PDF

A thermodynamic based constitutive model considering the mutual influence of multiple physical fields.

Sci Rep

November 2024

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.

In multiple physical fields, the mutual influence among these fields can significantly impact material elastoplasticity. This paper proposes a thermodynamic-based constitutive model that incorporates the mutual influence of multiple physical fields. Rather than treating physical field characteristics as adjustable "parameters" affecting material coefficients, the proposed model employs a thermodynamic dissipation potential derived from the Onsager reciprocity relations, accounting for thermodynamic forces coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!