New generation of amphiphilic vesicles known as aspasomes were investigated as potential carriers for transdermal delivery of tizanidine (TZN). Using full factorial design, an optimal formulation was developed by evaluating the effects of selected variables on the properties of the vesicles with regards to entrapment efficiency, vesicle size and cumulative percentage released. The optimal formula (TZN-AS 6) consisting of 20 mg TZN, 50 mg ascorbyl palmitate (AP), 50 mg cholesterol (CH) and 50 mg , represented well dispersed spherical vesicles in the nanorange sizes and exhibited excellent stability under different storage conditions. permeation studies using excised rat skin showed a 4.4-fold increase of the steady state flux in comparison to the unformulated drug ( < 0.05). The pharmacokinetic parameters obtained from the study using Wistar rats, showed that the bioavailability of TZN was enhanced significantly ( < 0.05) when compared to the oral market product of TZN, Sirdalud. Moreover, skin irritancy tests confirmed that the vesicles were non-invasive and safe for the skin. Based on the results obtained, the optimised aspasomes formula represents a promising Nano platform for TZN to be administered transdermally, thus improving the therapeutic efficacy of this important muscle relaxant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08982104.2019.1684940 | DOI Listing |
Int J Pharm
January 2025
Faculty of Pharmacy, Almarisah Madani University, Makassar, Indonesia; Department of Pharmacy and Pharmaceutical Technology, Almarisah Madani University, Makassar, Indonesia. Electronic address:
The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.
View Article and Find Full Text PDFInt J Pharm
January 2025
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India. Electronic address:
Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
Bioabsorbable polymer microneedles are highly attractive as modernized medical devices for efficient yet safe transdermal drug delivery and biofluid biopsy. In this study, the elastoplastic deformation of polymer microneedles, having a high aspect ratio (over 5-10), is investigated using poly(lactic) acid polymer approved by the United States Food and Drug Administration to be generally considered safe. Microneedle geometries are comprehensively analyzed for tip geometries comprising the tip diameter (ϕ) and tip taper length (l) of 100 designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!