AI Article Synopsis

  • Amyloid-β (Aβ) accumulation is a key early event in Alzheimer's disease, with neurons producing Aβ and microglia clearing it through endocytosis.
  • Cofilin, a protein involved in actin dynamics, enhances the internalization of the amyloid precursor protein (APP) and thus influences Aβ production, with its active form reducing surface APP levels.
  • However, genetically reducing cofilin in mouse models decreases Aβ deposition, while paradoxically increasing microglial activation and Aβ clearance, indicating cofilin's complex role in managing Aβ levels in the brain.

Article Abstract

The accumulation of amyloid-β (Aβ) plays a pivotal early event in the pathogenesis of Alzheimer's disease (AD). In the brain, neurons produce Aβ by the proteolytic processing of amyloid precursor protein (APP) through the endocytic pathway, whereas microglia mediate Aβ clearance also endocytic mechanisms. Previous studies have shown the critical importance of cofilin, a filamentous actin-severing protein, in actin dynamics and pathogen-triggered endocytic processes. Moreover, the binding of Aβ42 oligomers to β1-integrin triggers the cofilin activation, and in turn, cofilin promotes the internalization of surface β1-integrin. However, a role for cofilin in APP processing and Aβ metabolism has not been investigated. In this study, we found that knockdown of cofilin in Chinese hamster ovary 7WD10 cells and primary neurons significantly reduces Aβ production by increasing surface APP (sAPP) levels. Expression of active (S3A) but not inactive (S3E) cofilin reduces sAPP levels by enhancing APP endocytosis. Accordingly, Aβ deposition in APP and presenilin 1 (PS1) transgenic mice is significantly reduced by genetic reduction of cofilin (APP/PS1;cofilin). However, the reduction of Aβ load in APP/PS1;cofilin mice is paradoxically associated with significantly increased ionized calcium-binding adaptor molecule 1-positive microglial activation surrounding Aβ deposits. Primary microglia isolated from cofilin mice demonstrate significantly enhanced state of activation and greater ability to uptake and clear Aβ42, which is reversed with the active (S3A) but not inactive (S3E) form of cofilin. These results taken together indicate a significant role for cofilin in Aβ accumulation dual and opposing endocytic mechanisms of promoting Aβ production in neurons and inhibiting Aβ clearance in microglia.-Liu, T., Woo, J.-A. A., Yan, Y., LePochat, P., Bukhari, M. Z., Kang, D. E. Dual role of cofilin in APP trafficking and amyloid-β clearance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894083PMC
http://dx.doi.org/10.1096/fj.201901268RDOI Listing

Publication Analysis

Top Keywords

role cofilin
16
cofilin
12
cofilin app
12
11
dual role
8
app trafficking
8
trafficking amyloid-β
8
amyloid-β clearance
8
aβ clearance
8
endocytic mechanisms
8

Similar Publications

In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.

View Article and Find Full Text PDF

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance.

Ecotoxicol Environ Saf

January 2025

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China. Electronic address:

Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO.

View Article and Find Full Text PDF

Unraveling the protein kinase C/NDRG1 signaling network in breast cancer.

Cell Biosci

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.

N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).

View Article and Find Full Text PDF

Nox1/PAK1 is required for angiotensin II-induced vascular inflammation and abdominal aortic aneurysm formation.

Redox Biol

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:

NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.

Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!