Gold Nanoparticles on 3D-Printed Filters: From Waste to Catalysts.

ACS Omega

Department of Chemistry and Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland.

Published: October 2019

Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12-Au composite catalysts. The polyamide-adsorbed tetrachloroaurate can be readily reduced to gold nanoparticles by using sodium borohydride, ascorbic acid, hydrogen peroxide, UV light, or by heating. All reduction methods led to polyamide-anchored nanoparticles with an even size distribution and high dispersion. The particle sizes were somewhat dependent on the reduction method, but the average diameters were typically about 20 nm. Particle sizes were determined by using a combination of single-particle inductively coupled plasma mass spectrometry, helium ion microscopy, and powder X-ray diffraction. Dispersion of the particles was analyzed by scanning electron microscopy with energy-dispersive spectroscopy. Due to the high adsorption selectivity of polyamide-12 toward tetrachloroaurate, the three-dimensional-printed filters were first used as selective gold scavengers for the acidic leachate of electronicwaste (WEEE). The supported nanoparticles were then generated directly on the filter via a simple reduction step. These objects were used as catalysts for the reduction of 4-nitrophenol to 4-aminophenol. The described method provides a direct route from waste to catalysts. The selective laser sintering method can be used to customize the flow properties of the catalytically active filter object, which allows the optimization of the porous catalytic object to meet the requirements of catalytic processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796887PMC
http://dx.doi.org/10.1021/acsomega.9b02113DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
waste catalysts
8
filters selective
8
particle sizes
8
nanoparticles 3d-printed
4
3d-printed filters
4
filters waste
4
catalysts
4
catalysts three-dimensionally
4
three-dimensionally printed
4

Similar Publications

Synthesizing nanoparticle superlattices (NPSLs) with different symmetries is of great interest due to their impact on the collective emergent properties and potential applications. While several parameters have been identified as determinants for forming different symmetries of NPSLs, the high core dispersity, softness, and ligand interpenetration were proposed to drive the formation of the C14 Frank-Kasper (C14) structure like MgZn-type. Here, we report that the C14 phase can be formed in highly monodisperse one-size spherical nanoparticles (NPs) by controlling the interplay among their softness and ligand grafting density.

View Article and Find Full Text PDF

This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Recent Applications of Pillararene-Inspired Water-Soluble Hosts.

Chemistry

January 2025

Shanghai University, Chemistry, 99 Shang-da Road, 200444, Shanghai, CHINA.

Pillararenes and their derivatives have emerged in supramolecular chemistry as unique macrocycles for applications in host-guest chemistry, materials science and biomimetics. Many variations have been conceived and synthesized in recent years and in this review, we relate progress in water-soluble versions: leaning towerarenes, extended-pillararenes, biphenarenes, helicarenes and octopusarenes. These are applied in targeted drug delivery, selective uptake and release of aromatic guests, fabrication of gold/silver and mesoporous silica nanoparticles, cell imaging, pollutant separation, biomedicine (e.

View Article and Find Full Text PDF

Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.

View Article and Find Full Text PDF

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!