Current digital mammography systems primarily employ one of two types of detectors: indirect conversion, typically using a cesium-iodine scintillator integrated with an amorphous silicon photodiode matrix, or direct conversion, using a photoconductive layer of amorphous selenium (a-Se) combined with thin-film transistor array. The goal of this study was to evaluate a methodology for objectively assessing image quality to compare human observer task performance in detecting microcalcification clusters and extended mass-like lesions achieved with different detector types. The proposed assessment methodology uses a novel anthropomorphic breast phantom fabricated with ink-jet printing. In addition to human observer detection performance, standard linear metrics such as modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were also measured to assess image quality. An Analogic Anrad AXS-2430 a-Se detector used in a commercial FFDM/DBT system and a Teledyne Dalsa Xineos-2329 with CMOS pixel readout were evaluated and compared. The DQE of each detector was similar over a range of exposures. Similar task performance in detecting microcalcifications and masses was observed between the two detectors over a range of clinically applicable dose levels, with some perplexing differences in the detection of microcalcifications at the lowest dose measurement. The evaluation approach presented seems promising as a new technique for objective assessment of breast imaging technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797062 | PMC |
http://dx.doi.org/10.1117/1.JMI.6.4.043503 | DOI Listing |
J Exp Psychol Gen
January 2025
Department of Psychology, Yale University.
Our ability to maintain a consistent attentional state is essential to many aspects of daily life. Still, despite our best efforts, attention naturally fluctuates between more and less vigilant states. Previous work has shown that offering performance-based rewards or incentives can help to buffer against attentional lapses.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Department of Psychology, New York University.
The ability to discover patterns or rules from our experiences is critical to science, engineering, and art. In this article, we examine how much people's discovery of patterns can be incentivized by financial rewards. In particular, we investigate a classic category learning task for which the effect of financial incentives is unknown (Shepard et al.
View Article and Find Full Text PDFElife
January 2025
Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Centre for Sensorimotor Performance, School of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia.
Purposeful movement often requires selection of a particular action from a range of alternatives, but how does the brain represent potential actions so that they can be compared for selection, and how are motor commands generated if movement is initiated before the final goal is identified? According to one hypothesis, the brain averages partially prepared motor plans to generate movement when there is goal uncertainty. This is consistent with the idea that motor decision-making unfolds through competition between internal representations of alternative actions. An alternative hypothesis holds that only one movement, which is optimized for task performance, is prepared for execution at any time.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.
The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!