: Tumor mutational burden (TMB) has emerged as an independent biomarker to predict patient responses to treatment with immune checkpoint inhibitors (ICIs) for lung adenocarcinoma (LUAD). MicroRNAs (miRNAs) have a crucial role in the regulation of anticancer immune responses, but the association of miRNA expression patterns and TMB is not clear in LUAD. : Differentially expressed miRNAs in samples with high TMB and low TMB samples were screened in the LUAD dataset in The Cancer Genome Atlas. The least absolute shrinkage and selection operator (LASSO) method was applied to develop a miRNA-based signature classifier for predicting TMB levels in the training set. An test set was used to validate this classifier. The correlation between the miRNA-based classifier index and the expression of three immune checkpoints (PD-1, PD-L1, and CTLA-4) were explored. Functional enrichment analysis was carried out of the miRNAs included in the miRNA-based signature classifier. : Twenty-five differentially expressed miRNAs were used to establish a miRNA-based signature classifier for predicting TMB level. The accuracy of the 25-miRNA-based signature classifier was 0.850 in the training set, 0.810 in the test set and 0.840 in the total set. This miRNA-based signature classifier index showed a low correlation with PD-1 and PD-L1, and no correlation with CTLA-4. Enrichment analysis for these 25 miRNA revealed they are involved in many immune-related biological processes and cancer-related pathways. : MiRNA expression patterns are associated with tumor mutational burden and a miRNA-based signature classifier may serve as a biomarker for prediction of TMB levels in LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791442 | PMC |
http://dx.doi.org/10.1080/2162402X.2019.1629260 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.
Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.
Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.
Front Immunol
January 2025
Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.
Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.
Anal Chem
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
Label-free surface-enhanced Raman spectroscopy (SERS) combined with machine learning (ML) techniques presents a promising approach for rapid pathogen identification. Previous studies have demonstrated that purine degradation metabolites are the primary contributors to SERS spectra; however, generating these distinguishable spectra typically requires a long incubation time (>10 h) at room temperature. Moreover, the lack of attention to spectral variations between strains of the same bacterial species has limited the generalizability of ML models in real-world applications.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Ductal carcinoma in situ (DCIS) may progress to ipsilateral invasive breast cancer (iIBC), but often never will. Because DCIS is treated as early breast cancer, many women with harmless DCIS face overtreatment. To identify features associated with progression, we developed an artificial intelligence-based DCIS morphometric analysis pipeline (AIDmap) on hematoxylin-eosin-stained (H&E) tissue sections.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).
Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!