We longitudinally imaged both the superficial and deep cortical microvascular networks in brains of healthy mice and in a mouse model of stroke using visible-light optical coherence tomography (vis-OCT). We surgically implanted a microprism in mouse brains sealed by a chronic cranial window. The microprism enabled vis-OCT to image the entire depth of the mouse cortex. Following microprism implantation, we imaged the mice for 28 days and found that that it took around 15 days for both the superficial and deep cortical microvessels to recover from the implantation surgery. After the brains recovered, we introduced ischemic strokes by transient middle cerebral artery occlusion (tMCAO). We monitored the strokes for up to 60 days and observed different microvascular responses to tMCAO at different cortical depths in both the acute and chronic phases of the stroke. This work demonstrates that the combined microprism and cranial window is well-suited for longitudinal investigation of cortical microvascular disorders using vis-OCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788609PMC
http://dx.doi.org/10.1364/BOE.10.005235DOI Listing

Publication Analysis

Top Keywords

cranial window
12
visible-light optical
8
optical coherence
8
coherence tomography
8
microprism cranial
8
superficial deep
8
deep cortical
8
cortical microvascular
8
microprism
5
longitudinal deep-brain
4

Similar Publications

Importance: Intraventricular hemorrhage (IVH) has been described to typically occur during the early hours of life (HOL); however, the exact time of onset is still unknown.

Objective: To investigate the temporal distribution of IVH reported in very preterm neonates.

Data Sources: PubMed, Embase, Cochrane Library, and Web of Science were searched on May 9, 2024.

View Article and Find Full Text PDF

Combining In Vivo Two-Photon and Laser Speckle Microscopy With the Ex Vivo Capillary-Parenchymal Arteriole Preparation as a Novel Approach to Study Neurovascular Coupling.

Microcirculation

January 2025

Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.

Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.

Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.

View Article and Find Full Text PDF

Background And Objectives: It remains a challenge to monitor cerebrovascular autoregulation (CA) reliably and dynamically in an intensive care unit. The objective was to build a proof-of-concept active CA model exploiting advances in representation learning and the full complexity of the arterial blood pressure (ABP) and intracranial pressure (ICP) signal and outperform the pressure reactivity index (PRx).

Methods: A porcine cranial window CA data set (n = 20) was used.

View Article and Find Full Text PDF

Sea turtles face numerous threats, often stemming from human activities, resulting in high mortality rates. One of the primary risks they encounter is posed by fishing activities. In the South Adriatic Sea, the extensive trawling fleet often impacts sea turtles, and in recent years, a specific disorder, known as gas embolism (GE), and the associated disease known as decompression sickness (DCS), has emerged as a new threat.

View Article and Find Full Text PDF

The preservation of the original configurations of root canals during endodontic preparation is crucial for treatment success. Nickel-titanium (NiTi) rotary systems have been refined to optimize canal shaping while minimizing iatrogenic errors. This study aimed to evaluate and compare the shaping efficacy of the novel R-Motion (RM) and the established WaveOne Gold (WG) systems using micro-computed tomography (micro-CT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!