https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31645944&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3164594420200930
2662-681062019Horticulture researchHortic ResPhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia.83838310.1038/s41438-019-0165-zEthylene-responsive element binding factors (ERFs) are involved in regulation of various stress responses in plants, but their biological functions in waterlogging stress are largely unclear. In this study, we identified a petunia (Petunia × hybrida) ERF gene, PhERF2, that was significantly induced by waterlogging in wild-type (WT). To study the regulatory role of PhERF2 in waterlogging responses, transgenic petunia plants with RNAi silencing and overexpression of PhERF2 were generated. Compared with WT plants, PhERF2 silencing compromised the tolerance of petunia seedlings to waterlogging, shown as 96% mortality after 4 days waterlogging and 14 days recovery, while overexpression of PhERF2 improved the survival of seedlings subjected to waterlogging. PhERF2-RNAi lines exhibited earlier and more severe leaf chlorosis and necrosis than WT, whereas plants overexpressing PhERF2 showed promoted growth vigor under waterlogging. Chlorophyll content was dramatically lower in PhERF2-silenced plants than WT or overexpression plants. Typical characteristics of programmed cell death (PCD), DNA condensation, and moon-shaped nuclei were only observed in PhERF2-overexpressing lines but not in PhERF2-RNAi or control lines. Furthermore, transcript abundances of the alcoholic fermentation-related genes ADH1-1, ADH1-2, ADH1-3, PDC1, and PDC2 were reduced in PhERF2-silenced plants, but increased in PhERF2-overexpressing plants following exposure to 12-h waterlogging. In contrast, expression of the lactate fermentation-related gene LDH was up-regulated in PhERF2-silenced plants, but down-regulated in its overexpressing plants. Moreover, PhERF2 was observed to directly bind to the ADH1-2 promoter bearing ATCTA motifs. Our results demonstrate that PhERF2 contributes to petunia waterlogging tolerance through modulation of PCD and alcoholic fermentation system.© The Author(s) 2019.YinDongmeiD1College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China.0000 0004 1755 0738grid.419102.fSunDaoyangD2College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100 China.0000 0004 1760 4150grid.144022.1HanZhuqingZ1College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China.0000 0004 1755 0738grid.419102.fNiDianD1College of Ecology, Shanghai Institute of Technology, Shanghai, 201418 China.0000 0004 1755 0738grid.419102.fNorrisAylaA3Crops Pathology & Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA.0000 0004 0404 0958grid.463419.dJiangCai-ZhongCZ0000-0002-5972-79633Crops Pathology & Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616 USA.0000 0004 0404 0958grid.463419.d4Department of Plant Sciences, University of California Davis, Davis, CA 95616 USA.0000 0004 1936 9684grid.27860.3bengJournal Article20190701
EnglandHortic Res1016555402052-7276FloodingPlant molecular biologyConflict of interestThe authors declare that they have no conflict of interest.
20181225201951201959201910256020191028602019102861201971epublish31645944PMC680485610.1038/s41438-019-0165-z165IPCC. Climate Change 2007: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. (Cambridge University Press, Cambridge, 2007).Jackson M, Colmer T. Response and adaptation by plants to flooding stress. Ann. Bot. 2005;96:501–505. doi: 10.1093/aob/mci205.10.1093/aob/mci205PMC424702016217870Dennis ES, et al. Molecular strategies for improving waterlogging tolerance in plants. J. Exp. Bot. 2000;51:89–97. doi: 10.1093/jexbot/51.342.89.10.1093/jexbot/51.342.8910938799Purnobasuki H, Suzuki M. Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae) J. Plant Res. 2004;117:465–472. doi: 10.1007/s10265-004-0181-3.10.1007/s10265-004-0181-315538653Pennell RI, Lamb C. Programmed cell death in plants. Plant Cell. 1997;9:1157–1168. doi: 10.1105/tpc.9.7.1157.10.1105/tpc.9.7.1157PMC15698812237381Ismail AM, Ella ES, Vergara GV, Mackill DJ. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa) Ann. Bot. 2009;103:197–209. doi: 10.1093/aob/mcn211.10.1093/aob/mcn211PMC270731819001425James CS, et al. Does stream flow structure woody riparian vegetation in subtropical catchments? Ecol. Evol. 2016;6:5950–5963.PMC498360527547368Capon SJ, James CS, Williams L, Quinn GP. Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub: Muehlenbeckia florulenta Meisn. (tangled lignum) Environ. Exp. Bot. 2009;66:178–185. doi: 10.1016/j.envexpbot.2009.02.012.10.1016/j.envexpbot.2009.02.012Kato-Noguchi H, Morokuma M. Ethanolic fermentation and anoxia tolerance in four rice cultivars. J. Plant Physiol. 2007;164:168–173. doi: 10.1016/j.jplph.2005.09.017.10.1016/j.jplph.2005.09.01716483690Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci. 2008;175:706–716. doi: 10.1016/j.plantsci.2008.07.013.10.1016/j.plantsci.2008.07.013Ismond KP, Dolferus R, de Pauw M, Dennis ES, Good AG. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 2003;132:1292–1302. doi: 10.1104/pp.103.022244.10.1104/pp.103.022244PMC16706912857811Maricle BR, Crosier JJ, Bussiere BC, Lee RW. Respiratory enzyme activities correlate with anoxia tolerance in salt marsh grasses. J. Exp. Mar. Biol. Ecol. 2006;337:30–37. doi: 10.1016/j.jembe.2006.05.019.10.1016/j.jembe.2006.05.019Vodnik D, Strajnar P, Jemc S, Mačeka I. Respiratory potential of maize (Zea mays L.) roots exposed to hypoxia. Environ. Exp. Bot. 2009;65:107–110. doi: 10.1016/j.envexpbot.2008.05.005.10.1016/j.envexpbot.2008.05.005Ohmetakagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7:173–182. doi: 10.1105/tpc.7.2.173.10.1105/tpc.7.2.173PMC1607737756828Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007;145:1073–1085. doi: 10.1104/pp.107.104828.10.1104/pp.107.104828PMC204877817873090Francesco L, et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature. 2011;479:419–422. doi: 10.1038/nature10536.10.1038/nature1053622020282Oñate-Sánchez L, Singh KB. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol. 2002;128:1313–1322. doi: 10.1104/pp.010862.10.1104/pp.010862PMC15425911950980Cao Y, Song F, Goodman RM, Zheng Z. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J. Plant Physiol. 2006;163:1167–1178. doi: 10.1016/j.jplph.2005.11.004.10.1016/j.jplph.2005.11.00416436304Sharoni AM, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 2011;52:344–360. doi: 10.1093/pcp/pcq196.10.1093/pcp/pcq19621169347Zhang G, et al. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.) J. Exp. Bot. 2008;59:4095–4107. doi: 10.1093/jxb/ern248.10.1093/jxb/ern248PMC263901518832187Zhuang J, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol. Biol. Rep. 2011;38:745–753. doi: 10.1007/s11033-010-0162-7.10.1007/s11033-010-0162-720407836Zhang G, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009;60:3781–3796. doi: 10.1093/jxb/erp214.10.1093/jxb/erp214PMC273688819602544Zhang H, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res. 2010;19:809–818. doi: 10.1007/s11248-009-9357-x.10.1007/s11248-009-9357-x20087656Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010;232:765–774. doi: 10.1007/s00425-010-1208-8.10.1007/s00425-010-1208-820574667Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 2012;71:273–287. doi: 10.1111/j.1365-313X.2012.04996.x.10.1111/j.1365-313X.2012.04996.x22417285Xu K, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442:705–708. doi: 10.1038/nature04920.10.1038/nature0492016900200Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell. 2006;18:2021–2034. doi: 10.1105/tpc.106.043000.10.1105/tpc.106.043000PMC153398716816135Fukao T, Baileyserres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl Acad. Sci. USA. 2008;105:16814–16819. doi: 10.1073/pnas.0807821105.10.1073/pnas.0807821105PMC257550218936491Licausi F, et al. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 2010;62:302–315. doi: 10.1111/j.1365-313X.2010.04149.x.10.1111/j.1365-313X.2010.04149.x20113439Lv Y, Fu S, Chen S, Zhang W, Qi C. Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Plant J. 2016;4:199–211.Wang H, et al. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor. PLoS ONE. 2013;8:e65800. doi: 10.1371/journal.pone.0065800.10.1371/journal.pone.0065800PMC370653723874385Sun D, et al. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing. J. Exp. Bot. 2016;67:3353–3365. doi: 10.1093/jxb/erw155.10.1093/jxb/erw155PMC489272627099376Zhang H, et al. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta. 2004;220:262–270. doi: 10.1007/s00425-004-1347-x.10.1007/s00425-004-1347-x15300440Yi SY, et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 2004;136:2862–2874. doi: 10.1104/pp.104.042903.10.1104/pp.104.042903PMC52334815347795Liang YC, Reid MS, Jiang CZ. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. Hortic. Res. 2012;1:14061. doi: 10.1038/hortres.2014.61.10.1038/hortres.2014.61PMC459633226504556Yin J, et al. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic. Res. 2015;2:15059. doi: 10.1038/hortres.2015.59.10.1038/hortres.2015.59PMC468086226715989Yin DM, Chen SM, Chen F, Guan Z, Fang W. Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging. Environ. Exp. Bot. 2010;68:122–130. doi: 10.1016/j.envexpbot.2009.11.008.10.1016/j.envexpbot.2009.11.008Chen JC, et al. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol. Biol. 2004;55:521–530. doi: 10.1007/s11103-004-0590-7.10.1007/s11103-004-0590-715604697Reid, M. S., Chen, J. C. & Jiang, C. Z. in Petunia. (eds Gerats, T. & Strommer, J.) 381–394 (Springer, Berlin Heidelberg, 2009).Liu P, Wu Z, Xue H, Zhao X. Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses. Nucleic Acids Res. 2017;45:3944–3952. doi: 10.1093/nar/gkx153.10.1093/nar/gkx153PMC539714428334919Chen K, Liu H, Lou Q, Liu Y. Ectopic expression of the grape hyacinth (Muscari armeniacum) R2R3-MYB transcription factor gene, MaAN2, induces anthocyanin accumulation in tobacco. Front. Plant Sci. 2017;8:965. doi: 10.3389/fpls.2017.00965.10.3389/fpls.2017.00965PMC546298228642775Yin D, Zhang Z, Luo H. Anatomical responses to waterlogging in Chrysanthemum zawadskii. Sci. Hortic. 2012;146:86–91. doi: 10.1016/j.scienta.2012.08.019.10.1016/j.scienta.2012.08.019Ashraf MA. Waterlogging stress in plants: a review. Afr. J. Agr. Res. 2012;7:1976–1981.Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 2002;163:117–123. doi: 10.1016/S0168-9452(02)00080-8.10.1016/S0168-9452(02)00080-8Kumutha D, et al. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol. Plant. 2009;53:75–84. doi: 10.1007/s10535-009-0011-5.10.1007/s10535-009-0011-5Drew MC, Sisworo EJ. Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol. 1977;79:567–571. doi: 10.1111/j.1469-8137.1977.tb02241.x.10.1111/j.1469-8137.1977.tb02241.xLee JH, et al. Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta. 2005;222:211–224. doi: 10.1007/s00425-005-1525-5.10.1007/s00425-005-1525-515918028Wang H, et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol. Biol. 2004;55:183–192. doi: 10.1007/s11103-004-0113-6.10.1007/s11103-004-0113-615604674Suralta RR, Yamauchi A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 2008;64:75–82. doi: 10.1016/j.envexpbot.2008.01.004.10.1016/j.envexpbot.2008.01.004Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36. doi: 10.1046/j.1365-3040.2003.00846.x.10.1046/j.1365-3040.2003.00846.xFinlayson C. Plant ecology of Australia’s tropical floodplain wetlands: a review. Ann. Bot. 2005;96:541–555. doi: 10.1093/aob/mci209.10.1093/aob/mci209PMC424702416093268Voesenek LA, Colmer TD, Pierik R, Millenaar FF, Peeters AJ. How plants cope with complete submergence. New Phytol. 2006;170:213–226. doi: 10.1111/j.1469-8137.2006.01692.x.10.1111/j.1469-8137.2006.01692.x16608449Ashraf M. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci. 2003;165:69–75. doi: 10.1016/S0168-9452(03)00128-6.10.1016/S0168-9452(03)00128-6Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987;106:465–495. doi: 10.1111/j.1469-8137.1987.tb00153.x.10.1111/j.1469-8137.1987.tb00153.xWang W, Xiao Y, Chen L, Lin P. Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings. Aquat. Bot. 2007;86:223–228. doi: 10.1016/j.aquabot.2006.10.003.10.1016/j.aquabot.2006.10.003Das KK, Panda D, Sarkar RK, Reddy JN, Ismail AM. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Exp. Bot. 2009;66:425–434. doi: 10.1016/j.envexpbot.2009.02.015.10.1016/j.envexpbot.2009.02.015Rich SM, Ludwig M, Colmer TD. Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata) Plant Cell Environ. 2008;31:1007–1016. doi: 10.1111/j.1365-3040.2008.01813.x.10.1111/j.1365-3040.2008.01813.x18410492Rivoal J, Hanson AD. Metabolic control of anaerobic glycolysis, overexpression of Lactate Dehydrogenase in transgenic tomato roots supports the davies-roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol. 1994;106:1179–1185. doi: 10.1104/pp.106.3.1179.10.1104/pp.106.3.1179PMC15964712232401Nada K, El-Mowafy O. Effect of precuring warming on mechanical properties of restorative composites. Int. J. Dent. 2011;2011:536212. doi: 10.1155/2011/536212.10.1155/2011/536212PMC320560822114596Yin D, Chen S, Chen F, Guan Z, Fang W. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ. Exp. Bot. 2009;67:87–93. doi: 10.1016/j.envexpbot.2009.06.006.10.1016/j.envexpbot.2009.06.006Kang YY, Guo SR, Li J, Duan J. Effect of root applied 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) seedlings under hypoxia. Plant Growth Regul. 2009;57:259–269. doi: 10.1007/s10725-008-9344-x.10.1007/s10725-008-9344-xYin D, Chen S, Chen F, Jiang J. Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Mol. Biol. Rep. 2013;40:4581–4590. doi: 10.1007/s11033-013-2550-2.10.1007/s11033-013-2550-223645034Xu ZS, Chen M, Li LC, Ma YZ. Functions of the ERF transcription factor family in plants. Bot.-Bot. 2008;86:969–977. doi: 10.1139/B08-041.10.1139/B08-041Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140:411–432. doi: 10.1104/pp.105.073783.10.1104/pp.105.073783PMC136131316407444Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 1998;273:26857–26861. doi: 10.1074/jbc.273.41.26857.10.1074/jbc.273.41.268579756931Hinz M, et al. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 2010;153:757–772. doi: 10.1104/pp.110.155077.10.1104/pp.110.155077PMC287977020357136Peeters AJ, et al. Submergence research using Rumex palustris as a model; looking back and going forward. J. Exp. Bot. 2002;53:391–398. doi: 10.1093/jexbot/53.368.391.10.1093/jexbot/53.368.39111847236Hattori Y, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460:1026–1030. doi: 10.1038/nature08258.10.1038/nature0825819693083Mustroph A, et al. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots. Planta. 2006;225:103–114. doi: 10.1007/s00425-006-0333-x.10.1007/s00425-006-0333-x16845530Gunawardena A, Pearce DM, Jackson MB, Hawes CR, Evans DE. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.) Planta. 2001;212:205–214. doi: 10.1007/s004250000381.10.1007/s00425000038111216841Perata P, Voesenek L. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 2007;12:43–46. doi: 10.1016/j.tplants.2006.12.005.10.1016/j.tplants.2006.12.00517208508