Advances in gene editing now allow reverse genetics to be applied to a broad range of biological systems. Ultimately, any modification to coding sequences requires confirmation at the protein level, although immunoblotting is often hampered by antibody quality or availability especially in non-model species. Sequential Window Acquisition of All Theoretical Spectra (SWATH), a mass spectrometry (MS) technology with exceptional quantitative reproducibility and accuracy, offers an ideal alternative for protein-based confirmation. Here, using genome edits in mouse, zebrafish and Bicyclus anynana butterflies produced using either homologous recombination or targeted nucleases, we demonstrate absence of the targeted proteins using SWATH, thus confirming successful editing. We show that SWATH is a robust antibody-independent alternative for monitoring gene editing at the protein level and broadly applicable across diverse organisms and targeted genome manipulation techniques. Moreover, SWATH concomitantly defines the global proteome response in the edited organism, which may provide pertinent biological insights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811567PMC
http://dx.doi.org/10.1038/s41598-019-51612-zDOI Listing

Publication Analysis

Top Keywords

swath mass
8
mass spectrometry
8
gene editing
8
protein level
8
swath
5
tracking genome-editing
4
genome-editing associated
4
associated molecular
4
molecular perturbations
4
perturbations swath
4

Similar Publications

Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).

View Article and Find Full Text PDF

Diagnostic Accuracy of Novel Protein Biomarkers in Saliva to Detect Periodontitis Using Untargeted 'SWATH' Mass Spectrometry.

J Clin Periodontol

December 2024

Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.

Aim: To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity.

Material And Methods: Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database.

View Article and Find Full Text PDF

Development of a high-throughput platform for quantitation of histone modifications on a new QTOF instrument.

Mol Cell Proteomics

December 2024

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States. Electronic address:

Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The 5 histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry-based approaches, identification and quantification of modified histone peptides remains challenging due to factors such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks.

View Article and Find Full Text PDF

Isolation method of brain microvessels from small frozen human brain tissue for blood-brain barrier protein expression analysis.

Fluids Barriers CNS

December 2024

Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.

Background: Protein expression analysis of isolated brain microvessels provides valuable insights into the function of the blood-brain barrier (BBB). However, isolation of brain microvessels from human brain tissue, particularly in small quantities, poses significant challenges. This study presents a method for isolating brain microvessels from a small amount of frozen human brain tissue, adapting techniques from an established mouse brain capillary isolation method.

View Article and Find Full Text PDF

To better understand host cell protein (HCP) retention in adeno-associated virus (AAV) downstream processes, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to quantitatively profile residual HCPs for four AAV serotypes (AAV2, -5, -8, and -9) produced with HEK293 cells and purified using POROS CaptureSelect AAVX affinity chromatography. A broad range of residual HCPs were detected in affinity eluates after purification (  = 2,746), and HCP profiles showed universally present species (  = 1,117) and species unique to one or more AAV serotype. SWATH-MS revealed that HCP persistence was dominated by high-abundance conserved species (HACS), which appeared across all serotype conditions studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!