The widespread use of electronic equipment, such as computers, cell phones, communication devices and wireless facilities, has increased electromagnetic radiation, which can cause cancer and other diseases in humans. Furthermore, there is an urgent need for excluding the interferences in the aircraft and other precise instruments in military aspects. Therefore, minimizing and attenuating electromagnetic waves are critical issues. In this review, various two-dimensional (2D) materials and structures are discussed for microwave-absorbing and shielding in terms of 'thin, light, wide, and strong' requirements. The typical absorption and attenuation mechanisms are analysed and summarized to deliver an overall view and offer possible trends for future developments. Multiple works have revealed that 2D materials and structures are promising for use in microwave devices. In addition to conventional materials with 2D structures, we focus on new graphene-like materials, such as 2D transition metal dichalcogenides and black phosphorus, due to their beneficial absorbing and shielding properties. These 2D materials will likely play an important role in electromagnetic wave absorption and cancellation in the future. Finally, the related challenges and some new 2D materials are briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab50af | DOI Listing |
Small
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China.
The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!