Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness.

Endocr Relat Cancer

Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Published: December 2019

Tumour-associated fibroblasts (TAFs) are key elements of the tumour microenvironment, but their role in pituitary neuroendocrine tumours (PitNETs) has been little explored. We hypothesised that TAF-derived cytokines may play a role in tumour aggressiveness and that their release can be inhibited by somatostatin analogues. TAFs were isolated and cultured from 16 PitNETs (11 clinically non-functioning tumours and 5 somatotropinomas). The fibroblast secretome was assessed with a 42-plex cytokine array before and after multiligand somatostatin receptor agonist pasireotide treatment. Angiogenesis and epithelial-to-mesenchymal transition pathway assessment included CD31, E-cadherin and ZEB1 expression. GH3 cells treated with TAF- or skin fibroblast-conditioned medium were assessed for migration, invasion and cell morphology changes. PitNET TAFs secreted significant amounts of cytokines including CCL2, CCL11, VEGF-A, CCL22, IL-6, FGF-2 and IL-8. TAFs from PitNETs with cavernous sinus invasion secreted higher IL-6 levels compared to fibroblasts from non-invasive tumours (P = 0.027). Higher CCL2 release from TAFs correlated with more capillaries (r = 0.672, P = 0.004), and TAFs from PitNETs with a higher Ki-67 tended to secrete more CCL2 (P = 0.058). SST1 is the predominant somatostatin receptor in TAFs, and pasireotide decreased TAF-derived IL-6 by 80% (P < 0.001) and CCL2 by 35% (P = 0.038). GH3 cells treated with TAF-conditioned medium showed increased migration and invasion compared to cells treated with skin fibroblast-conditioned medium, with morphological and E-cadherin and ZEB1 expression changes suggesting epithelial-to-mesenchymal transition. TAF-derived cytokines may increase PitNET aggressiveness, alter angiogenesis and induce epithelial-to-mesenchymal transition changes. Pasireotide's inhibitory effect on TAF-derived cytokines suggest that this effect may play a role in its anti-tumour effects.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-19-0327DOI Listing

Publication Analysis

Top Keywords

taf-derived cytokines
12
epithelial-to-mesenchymal transition
12
cells treated
12
tumour aggressiveness
8
cytokines play
8
play role
8
somatostatin receptor
8
e-cadherin zeb1
8
zeb1 expression
8
gh3 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!