Method for initially selecting Al-tolerant rice varieties based on the charge characteristics of their roots.

Ecotoxicol Environ Saf

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: January 2020

To explore the relationship between charge characteristics of rice roots and aluminum (Al) tolerance of rice, roots of 47 different rice genotypes were obtained by hydroponic experiment. The zeta potentials of roots were determined by streaming potential method, and the Al tolerance and the functional groups of rice were measured by relative root elongation and infrared spectroscopy (ATR-FTIR), respectively. The exchangeable, complexed and precipitated Al(III) sorbed on the root surface of rice was extracted with 1 mol L KNO, 0.05 mol L EDTA-2Na and 0.01 mol L HCl, respectively. There was a significant correlation between the zeta potentials and the relative elongation of rice roots, indicating that the zeta potentials of rice roots could be used to characterize rice tolerance to Al toxicity. Twelve Al-tolerant rice varieties, 25 medium Al-tolerant rice varieties, and 10 Al-sensitive rice varieties were obtained. The Al-tolerant rice varieties sorbed less complexed Al(III) and total Al(III) because there was lower negative charge on their roots compared to less tolerant genotypes. A correlation analysis showed that there were significant negative correlations between the zeta potential, relative root elongation, and the total Al(III) sorption capacity of the roots, which further confirmed the reliability of using the root zeta potential to characterize rice tolerance to Al toxicity. The results of this paper provide a new method for screening Al-tolerant rice varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109813DOI Listing

Publication Analysis

Top Keywords

rice varieties
24
al-tolerant rice
20
rice roots
16
rice
15
zeta potentials
12
charge characteristics
8
roots
8
relative root
8
root elongation
8
characterize rice
8

Similar Publications

Linkage Mapping and Identification of Candidate Genes for Cold Tolerance in Rice (Oryza Sativa L.) at the Bud Bursting Stage.

Rice (N Y)

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.

View Article and Find Full Text PDF

Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops.

View Article and Find Full Text PDF

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a staple food crop globally, with origins in wild progenitors within the AA genome group of Oryza species. Oryza rufipogon and Oryza meridionalis are native to tropical Asia and Northern Australia and offer unique genetic reservoirs. Here we explored the relationships of the genomes of these wild rice species with the domesticated rice genome.

View Article and Find Full Text PDF

Introduction: Black rice (Oryza sativa L.) has gained prominence as a functional food because of its rich content of anthocyanins and polyphenols, offering potential health benefits. However, comprehensive research addressing the diverse anthocyanin compositions in black rice cultivars remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!