Key role of organic cation transporter 2 for the nephrotoxicity effect of triptolide in rheumatoid arthritis.

Int Immunopharmacol

Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, PR China. Electronic address:

Published: December 2019

Tripterygium wilfordii Hook. F. (TwHF), a traditional Chinese Medicine, is effective in treating rheumatoid arthritis (RA), but its severe nephrotoxicity limits its extensive application. The nephrotoxic mechanism of Triptolide (TP), the main pharmacological and toxic component of TwHF, has not been fully revealed. This study was designed to explore the nephrotoxicity of TP in the RA state and the potential molecular mechanism. A rat collagen-induced arthritis (CIA) model was constructed and administered with TP for 28 days in vivo. Results showed that the kidney injury induced by TP was aggravated in the CIA state, the concentration of TP in the renal cortex was higher than that of the medulla after TP administration in the CIA rats, and the expression of organic cation transporter 2 (Oct2) in kidney was up-regulated under CIA condition. Besides, rat kidney slice study demonstrated that TP was transported by Oct2 and this was confirmed by transient silencing and overexpression of OCT2 in HEK-293T cells. Furthermore, cytoinflammatory models on HK-2 and HEK-293T cell lines were constructed by exposure of TNF-α or IL-1β to further explore the TP's renal toxicity. Results suggested that TNF-α exposure aggravated TP's toxicity and up-regulated the protein expression of OCT2 in both cell lines. TNF-α treatment also increased the function of OCT2 and finally OCT2 silencing confirmed OCT2 mediated nephrotoxicity of TP in HEK-293T cells. In summary, the exposure of TNF-α in RA state induced the expression of OCT2, which transported more TP into kidney cortex, subsequently exacerbated the kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.105959DOI Listing

Publication Analysis

Top Keywords

organic cation
8
cation transporter
8
rheumatoid arthritis
8
kidney injury
8
oct2
8
hek-293t cells
8
cell lines
8
exposure tnf-α
8
expression oct2
8
kidney
5

Similar Publications

The role of cationic bridges in enhancing sulfamethoxazole adsorption onto montmorillonite.

Environ Geochem Health

January 2025

Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.

The coexistence and interaction of free metal cations in the environment can significantly affect the migration of organic pollutants, leading to varied effects depending on environmental conditions. However, the mechanisms affecting the adsorption of organic pollutants in the presence of metal ions remain poorly understood due to limited molecular-level studies. This study investigated the adsorption behavior of sulfamethoxazole (SMX) on montmorillonite (MT) at different pH values (1.

View Article and Find Full Text PDF

Human organic cation transporter 2 (hOCT2/SLC22A2) is a key drug transporter that facilitates the transport of endogenous and exogenous organic cations. Because hOCT2 is responsible for the development of adverse effects caused by platinum-based anti-cancer agents, drugs with OCT2 inhibitory effects may serve as prophylactic agents against the toxicity of platinum-based anti-cancer agents. In the present study, we established a machine learning-based quantitative structure-activity relationship (QSAR) model for hOCT2 inhibitors based on the public ChEMBL database and explored novel hOCT2 inhibitors among the FDA-approved drugs.

View Article and Find Full Text PDF

Solid-state synthesis is an approach to organic synthesis that is desirable because it can offer minimal or no solvent waste, high yields, and relatively low energy footprints. Herein, we report the solid-state synthesis of a novel Schiff base, 4-{()-[(4-methylpyridin-3-yl)imino]methyl}benzoic acid (), synthesized through the reaction of an amine and an aldehyde. was prepared via solvent-drop (water) grinding (SDG) on a multigram scale with 97% yield and was characterized using FTIR, H NMR, and SCXRD.

View Article and Find Full Text PDF

Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.

View Article and Find Full Text PDF

Photocatalytic Organic Semiconductor-Bacteria Imprinted Polymers for Highly Selective Determination of at the Single-Cell Level.

Anal Chem

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

This work utilized a combination of photocatalytic organic semiconductors and bacteria to create a photocatalytic organic semiconductor-bacterial biomixture system based on a bacteria imprinted polymers (OBBIPs-PEC) sensor, for the detection of with high sensitivity in "turn-on" mode at the single-cell level. This outstanding sensor arises from an integration of two different types of semiconductor materials to form heterojunctions. As well this sensor involves combining a semiconductor material with cationic side chains and an electron transport chain within a natural cellular environment, in which the cationic side chain of poly(fluorene--phenylene) organic semiconductor at 2-(4-mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione (PFP-OC@MNC) demonstrated the ability to penetrate the cell membrane of and interact with specific binding sites through electrostatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!