Myocardial ischemia/reperfusion (IR) injury is one of the most prevalent cardiovascular diseases, known for its high mortality and morbidity worldwide. Based on pre-existing evidence, LGALS3 has been found to be closely associated with cardiac diseases. Hence, the objective of our study is to explore the potential function of KCNQ1OT1/microRNA-204-5p (miR-204-5p)/ LGALS3 axis on myocardial IR injury and the underlying mechanism. A myocardial IR injury mouse model was established in vivo and an in vitro cardiomyocyte model was induced by hypoxia/Reoxygenation exposure. Next, gain- and loss-of-function experiments were employed in order to measure the viability and apoptosis of cardiomyocytes and the area of ischemic infarct by CCK-8, TUNEL staining and Evans blue/TTC double staining. LGALS3 was found to be highly expressed in myocardial IR injury. The downregulation of LGALS3 resulted in the alleviation of myocardial IR injury in mouse models. In addition, KCNQ1OT1 could promote the LGALS3 expression by binding to miR-204-5p, which led to aggravated myocardial IR injury. In conclusion, KCNQ1OT1 binds to miR-204-5p to exacerbate myocardial IR injury in mice through the up-regulation of LGALS3, providing a novel insight for myocardial IR injury treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2019.109441DOI Listing

Publication Analysis

Top Keywords

myocardial injury
28
myocardial
9
injury
9
myocardial ischemia/reperfusion
8
ischemia/reperfusion injury
8
injury mice
8
injury mouse
8
lgals3
6
long non-coding
4
non-coding rna
4

Similar Publications

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Currently, recommended pre-operative risk assessment models including the revised cardiac risk index (RCRI) are not very effective in predicting postoperative myocardial damage after non-elective surgery, especially for elderly patients. This study aimed to create a new risk prediction model to assess myocardial injury after non-cardiac surgery (MINS) in elderly patients and compare it with the RCRI, a well-known pre-operative risk prediction model. This retrospective study included 370 elderly patients who were over 65 years of age and had non-elective surgery in a tertiary hospital.

View Article and Find Full Text PDF

Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!