Oxidative stress plays an important role in the pathogenesis of cardiovascular disease. Quercetin, a naturally occurring flavonoid presents in plants and human diet, has been reported to exert antioxidant properties in vivo and in vitro. The upregulation of antioxidant enzyme heme oxygenase-1 (HMOX1) in endothelial cells is considered to be beneficial in cardiovascular disease. In this work, we tested whether quercetin might suppress hydrogen peroxide (HO)-induced cell damage in endothelial cells by augmenting this cellular antioxidant defense. It was found that quercetin upregulated HMOX1 expression to protect endothelial cells against oxidative stress, and the protective effects of quercetin on HO-induced endothelial cell damage (such as loss of cell viability and reduction of nitric oxide) could be abolished by the specific small-interfering RNA against HMOX1 expression or HMOX1 activity inhibitor. In addition, the activation of ERK/Nrf2 signaling pathway was critical to the upregulation of HMOX1 induced by quercetin. Consistent with its non-effective ability to induce HMOX1, rutin (the glycoside of quercetin) showed less protective effects on HO-induced cell damage than quercetin. Therefore, quercetin could attenuate oxidative stress-induced endothelial cell damage at least partly through ERK/Nrf2/HMOX1 pathway. Our results also suggested a novel mechanism for the anti-oxidant property of quercetin and might explain in part the protective cardiovascular effects of diets rich in these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2019.108157 | DOI Listing |
Alzheimers Dement
December 2024
Xuanwu Hospital of Capital Medical University, Beijing, Beijing, China.
Background: Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions.
Method: We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months.
Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFBackground: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by hallmark amyloid plaques and neurofibrillary tangles as well as by a significant loss of myelin in the cerebral cortex and other brain regions, which contributes to neurodegeneration and cognitive decline. Remyelination, of the myelin sheath by oligodendrocytes, is a process that may be impaired in neurodegenerative diseases. Depending on the severity of the disease, there occurs loss or partial damage of the myelin sheath surrounding the neuron leading to memory deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!