Extending the Range of Controlling Protein Adsorption via Subsurface Architecture.

ACS Appl Mater Interfaces

Laboratory for Advanced Fibers, Empa , Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen , Switzerland.

Published: November 2019

AI Article Synopsis

  • Recent research indicates that water trapped in a subsurface chemical gradient reduces the adsorption of the protein bovine serum albumin (BSA) due to its molecular orientation.
  • A hypothesis suggests that the oriented water molecules create a dipolar field that interacts with dipolar proteins near the surface.
  • The study shows that adjusting plasma oxidation times increases confined water levels, but an optimal duration exists that minimizes protein adsorption, highlighting the importance of water molecule proximity.

Article Abstract

Recently, it has been shown that water, confined in a plasma polymer subsurface chemical gradient, nanometers below the surface, significantly reduced the amount of adsorbed protein bovine serum albumin (BSA). Relating to this effect, we proposed the hypothesis that oriented water molecules within the subsurface gradient generate a long-range dipolar field, which interacts with dipolar proteins such as BSA near the surface region. This study extends the above used in situ multistep plasma deposition process to introduce plasma oxidation modifications of the subsurface architecture with the aim to further control the effect on protein adsorption. Neutron reflectivity measurements reveal that the oxidation time increases the amount of matrix-confined water. There is, however, an optimal oxidation time to obtain minimal protein adsorption, which suggests that a minimal distance between confined water molecules plays an important role. Altogether we can extend the range of controlling the adsorbed protein mass by the introduction of this additional plasma oxidation step.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b14584DOI Listing

Publication Analysis

Top Keywords

protein adsorption
12
range controlling
8
subsurface architecture
8
adsorbed protein
8
water molecules
8
plasma oxidation
8
oxidation time
8
protein
5
extending range
4
controlling protein
4

Similar Publications

Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).

View Article and Find Full Text PDF

As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!