Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In addition to camouflage and chemical toxicity, many caterpillars defend themselves against predators with sudden sharp movements. For smaller species, these movements propel the body away from the threat, but in larger caterpillars, such as the tobacco hornworm, Manduca sexta, the movement is a defensive strike targeted to a noxious stimulus on the abdomen. Previously, strikes have been studied using mechanical stimulation like poking or pinching the insect, but such stimuli are hard to control. They also introduce mechanical perturbations that interfere with measurements of the behavior. We have now established that strike behavior can be evoked using infra-red lasers to provide a highly localized and repeatable heat stimulus. The latency from the end of an effective stimulus to the start of head movement decreased with repeated stimuli and this effect generalized to other stimulus locations indicating a centrally mediated component of sensitization. The tendency to strike increased with two successive subthreshold stimuli. When delivered to different locations or to a single site, this split-pulse stimulation revealed an additional site-specific sensitization that has not previously been described in Manduca. Previous work shows that strong stimuli increases the effectiveness of sensory stimulation by activating a long-lasting muscarinic cation current in motoneurons. Injection of muscarinic cholinergic antagonists, scopolamine methyl bromide or quinuclidinyl benzilate, only decreased the strike probability evoked by paired stimuli at two locations and not at a single site. This strongly suggests a role of muscarinic acetylcholine receptors in the generalized sensitization of nociceptive responses in caterpillars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.24797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!