Noble-metal-based nanomaterials made of less toxic metals have been utilized as potential antibacterial agents due to their distinctive oxidase-like activity. In this study, we fabricated core-shell structured Pd@Ir bimetallic nanomaterials with an ultrathin shell. Pd@Ir nanostructures show morphology-dependent bactericidal activity, in which Pd@Ir octahedra possessing higher oxidase-like activity exert bactericidal activity stronger than that of Pd@Ir cubes. Furthermore, our results reveal that the presence of natural organic matter influences the antibacterial behaviors of nanomaterials. Upon interaction with humic acid (HA), the Pd@Ir nanostructures induce an elevated level of reactive oxygen species, resulting in significantly enhanced bactericidal activity of the nanostructures. Mechanism analysis shows that the presence of HA efficiently enhances the oxidase-like activity of nanomaterials and promotes the cellular internalization of nanomaterials. We believe that the present study will not only demonstrate an effective strategy for improving the bactericidal activity of noble-metal-based nanomaterials but also provide an understanding of the antibacterial behavior of nanomaterials in the natural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b04366 | DOI Listing |
Curr Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFFood Sci Technol Int
January 2025
Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye.
This study aimed to evaluate the antimicrobial effectiveness of cumin seed essential oil (CEO) after encapsulation in chickpea protein-maltodextrin matrix by spray drying and to provide insight into potential use as a natural ingredient in meat-based products. The surface morphology results of encapsulated CEO showed the dispersion in the wall material matrix, and the observed specific common peaks in the FT-IR spectra of encapsulated and non-encapsulated CEO proved the successful encapsulation. The antibacterial activity of non-encapsulated CEO against BC1402, ATCC 27853, Typhimurium ATCC 0402, ATCC 25923 were first evaluated by disc diffusion assay.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Sakaka, Saudi Arabia.
Coconut oil is eatable oil with many nutritional and cosmetic applications. In this investigation coconut oil was subjected to 0 to 5 L/min of ozone for 3 h and the chemical composition of both crude and ozonized oil was valued via Gas Chromatography-Mass Spectrometry (GC-MS). Some biological tests were done including antibacterial action versus Helicobacter pylori, anti-biofilm activity versus H.
View Article and Find Full Text PDFArch Microbiol
January 2025
SLIIT, Malabe, Sri Lanka.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!