Energy retrofits can reduce air exchange, raising the concern of whether indoor radon and moisture levels could increase. This pre/post-intervention study explored whether simple radon interventions implemented in conjunction with energy retrofits can prevent increases in radon and moisture levels. Treatment homes (n = 98) were matched with control (no energy retrofits or radon intervention) homes (n = 12). Control homes were matched by geographic location and foundation type. t-tests were used to determine whether post-energy retrofit radon and moisture level changes in treatment homes significantly differed from those in control homes. The radon interventions succeeded in preventing statistically significant increases in first floor radon using arithmetic (p = 0.749) and geometric means (p = 0.120). In basements, arithmetic (p = 0.060) and geometric (p = 0.092) mean radon levels statistically significantly increased, consistent with previous studies which found that basement radon levels may increase even if first floor levels remain unchanged. Changes in infiltration were related to changes in radon (p = 0.057 in basements; p = 0.066 on first floors). Only 58% of the change in infiltration was due to air sealing, with the rest due to weather changes. There was no statistically significant association between air sealing itself and radon levels on the first floor (p = 0.664). Moisture levels also did not significantly increase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ina.12616 | DOI Listing |
Environ Pollut
January 2025
Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.
Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.
View Article and Find Full Text PDFHealth Phys
January 2025
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104.
Combining a traditional weather station with radiation monitors draws the public's attention to the magnitude of background radiation and its typical variation while providing early indications of unplanned radiological releases, such as nuclear power plant accidents or terrorist acts. Several networks of combined weather and radiation monitoring sensors exist, but these fail to be affordable for broad distribution. This work involves creating an affordable system to accumulate data from multiple locations into a single open-source database.
View Article and Find Full Text PDFJ Environ Manage
October 2024
US Department of Energy Office of Legacy Management, USA.
One reason arid and semi-arid environments have been used to store waste is due to low groundwater recharge, presumably limiting the potential for meteoric water to mobilize and transport contaminants into groundwater. The U.S.
View Article and Find Full Text PDFSci Total Environ
September 2024
College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China. Electronic address:
The characteristics of radon exhalation in the hygroscopic properties of powder solid wastes are immensely significant for environmental safety and their transportation, storage, and landfill. This study detected the radon concentration of superfine cement and five kinds of powder solid waste: fly ash, silica fume, coal gangue, S95 mineral powder, and molybdenum tailing powder, at different hygroscopic times for 1-5 d under 95 % relative humidity. Additionally, the influence of particle size and porosity of solid waste on radon exhalation characteristics was analyzed using a laser particle size analyzer and nitrogen adsorption technology.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2024
Health Physics Division, Bhabha Atomic Research Centre, Trombay, 400094, Maharastra, India.
Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (Rn). A number of variables such as radium (Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!