Localization dependent sensitivity of cerebral Na,K-ATPase to irradiation induced oxidative imbalance in rats.

J Physiol Pharmacol

Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Published: August 2019

Na,K-ATPase represents the key enzyme maintaining the ionic gradient across plasma membrane. It was documented that in directly irradiated organs the activity of this enzyme is decreased. The aim of present study was to clarify the remote effect of irradiation in mediastinal area on the activity of the Na,K-ATPase in selected brain regions in rats. Ionizing radiation in single dose 25 Gy induced alterations in oxidative status of blood plasma. Irradiation also decreased the activity of the Na,K-ATPase in cerebral cortex. Measurements of kinetic properties of the enzyme dependently on the concentration of energy substrate ATP or cofactor Na indicated that the lowered enzyme activity is probably a consequence of decreased number of active molecules of the enzyme, as suggested by lowered V values (by 13 - 14%). Immunoblot analysis revealed that this effect is connected namely to decreased presence of α2 and α3 subunits (by 25% and 30% respectively). Considering the current concepts about involvement of the malfunction of α2 α3 subunits in development of primary brain dysfunctions, it may be hypothesized that the lowered functionality of those subunits of Na,K-ATPase may represent a predisposition to neurodegenerative disorders after irradiation. The observed effect seems to be localization dependent as the enzyme in cerebellum resisted to irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.26402/jpp.2019.4.08DOI Listing

Publication Analysis

Top Keywords

localization dependent
8
activity nak-atpase
8
α2 α3
8
α3 subunits
8
enzyme
6
nak-atpase
5
irradiation
5
dependent sensitivity
4
sensitivity cerebral
4
cerebral nak-atpase
4

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Previous studies demonstrated that sensorimotor training enhances interoceptive abilities. Athletes are highly engaged in performance-driven physical training and often incorporate-to varying degrees-sensorimotor training into their routines. In this study, we investigated the role of individual differences in interoception by comparing professional athletes of different performance levels and both sexes with recreational athletes and controls, applying a three-dimensional model of interoception.

View Article and Find Full Text PDF

Background: Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.

Methods: We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations.

View Article and Find Full Text PDF

Background: Even though major improvements have been made in the treatment of myeloma, the majority of patients eventually relapse or progress. Patients with multiple myeloma who relapse after initial high-dose chemotherapy with autologous stem cells have a median progression free survival up to 2-3 years, depending on risk factors such as previous remission duration. In recent years, growing evidence has suggested that allogeneic stem cell transplantation could be a promising treatment option for patients with relapsed or progressed multiple myeloma.

View Article and Find Full Text PDF

The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!