In this study, a fast and efficient method for the separation and analysis of the products in the acid-catalyzed depolymerization of commercially available sodium lignosulfonate has been developed. The depolymerized lignosulfonate products were well separated and characterized by advanced polymer chromatography (APC) employing four ACQUITY APC XT columns in series and a ultraviolet detector. The developed method enabled the detection of relative-low-molecular-mass lignin degradation products with peak molecular weights () of 720, 490, and 260 Da, and an extremely low polydispersity index (PDI) of 1, indicating almost complete conversion of lignosulfonate to smaller molecules. The effects of reaction temperature, time, and catalyst/lignin ratio on the reaction products were systematically investigated. High yields of depolymerization (>80%) could be obtained under the mild acid-catalyzed conditions at 130℃ for 60 min using a catalyst/lignin ratio of 2.334:1. Preliminary studies also indicated that the mild acid-catalytic mechanism is unaffected by the reaction time, temperature, or catalyst concentration, thus suggesting the specificity of the catalytic procedure employed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/SP.J.1123.2019.02013 | DOI Listing |
Sci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFNat Commun
January 2025
Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.
Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, PR China. Electronic address:
Cationic polymers have been used in the cationization of cotton fabrics for salt-free dyeing, but commonly used polymers are limited by their high molecular weight and low adsorption efficiency, leading to high dosage or complex modification conditions. In this study, polyallylamine with low molecular weight was found to be an efficient cationic agent for cotton modification and the modified fabrics can be salt-free dyed with different kinds of reactive dyes after the optimization of the modification process. Furthermore, the modification bath was reused by replenishing a small amount of cationic agent and adjusting the pH to the original level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!