The increase in haylage production leads to the search for additives that improve its fermentation and nutritional value. This study aimed to assess the effect of adding crude glycerine and microbial additives on losses, fermentation parameters and nutritional value of haylage. The treatments were composed of three doses of crude glycerine (0, 60 and 120 g/kg forage) and three types of inoculation (control (distilled water), SIL (Lactobacillus plantarum 2.6 × 10 CFU/g and Pediococcus pentosaceus 2.6 × 10 CFU/g) and INC (Bacillus subtilis 2.0 × 10 CFU/g, Lactobacillus plantarum 8.0 × 10 CFU/g and Pediococcus acidilactici 1.0 × 10 CFU/g)). A negative linear effect was observed in the fibre fraction contents of the haylages as a function of crude glycerine addition, which contributed to similarly increasing dry matter in vitro digestibility coefficients. The use of inoculants also resulted in haylages with higher digestibility coefficients of 635.1 and 646.8 g/kg dry matter (DM) in the treatments inoculated with INC and SIL, respectively. Fermentation losses were reduced by adding crude glycerine and were not impacted by the microbial inoculants. Higher lactic acid productions were obtained as a function of crude glycerine doses. Acetic acid productions decreased from 29.3 g/kg DM to 19.2 g/kg DM between crude glycerine doses of 0 and 120 g/kg forage, respectively. SIL led to the highest lactic acid productions compared to INC and the control. Crude glycerine improves the fermentation parameters and nutritional value of haylages. However, the microbial inoculants had little impact on the parameters assessed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-019-02082-yDOI Listing

Publication Analysis

Top Keywords

crude glycerine
32
microbial inoculants
12
acid productions
12
crude
8
glycerine microbial
8
improve fermentation
8
adding crude
8
fermentation parameters
8
parameters nutritional
8
120 g/kg forage
8

Similar Publications

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol.

Bioresour Technol

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.

View Article and Find Full Text PDF

The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Exploring the potential of soapstock over a glycerol in vitamin K2 production by Bacillus subtilis natto: a comparative analysis.

Microb Cell Fact

December 2024

Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran.

Background: Vitamin K2 is an essential nutrient for blood coagulation and cardiovascular health and mainly produced by bacteria strain like B. subtilis. researchers have explored producing strain improvement, cultivation mode, environmental optimization, increased secretion, and using cheaper carbon and nitrogen sources in order to increase vitamin K2 productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!