Optimization of export mechanisms for valuable extracellular products is important for the development of efficient microbial production processes. Identification of the relevant export mechanism is the prerequisite step for product export optimization. In this work, we identified transporters involved in malate export in an engineered L-malate-producing Escherichia coli strain using cheminformatics-guided genetics tests. Among all short-chain di- or tricarboxylates with known transporters in E. coli, citrate, tartrate, and succinate are most chemically similar to malate as estimated by their molecular signatures. Inactivation of three previously reported transporters for succinate, tartrate, and citrate, DcuA, TtdT, and CitT, respectively, dramatically decreased malate production and fermentative growth, suggesting that these transporters have substrate promiscuity for different short-chain organic acids and constitute the major malate export system in E. coli. Malate export deficiency led to an increase in cell sizes and accumulation of intracellular metabolites related to malate metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-019-10164-y | DOI Listing |
J Hazard Mater
January 2025
College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, China. Electronic address:
Physiol Plant
August 2024
Department of Plant Sciences, University of California at Davis, Davis, CA.
The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal.
View Article and Find Full Text PDFNew Phytol
October 2024
Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium.
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes.
View Article and Find Full Text PDFCell Chem Biol
August 2024
Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. Electronic address:
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells.
View Article and Find Full Text PDFCell Mol Biol Lett
March 2024
Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!