Herein, we reported the fabrication of novel peptide-conjugated ligand-targeted nanoliposomes (LTLs) for chemo-photodynamic therapy against HER2-positive breast cancer. The LTL core was utilized for encapsulating doxorubicin (DOX) for chemotherapy, and methylene blue (MB) attached NaYF:Yb,Er upconversion nanoparticles (UCNPs) for NIR-activated bioimaging and leveraging its visible emission for photoexciting MB for enhanced photodynamic therapy (PDT). The specificity of our LTLs was achieved by conjugating a newly discovered anti-HER2 peptide screened from a phage display peptide library. The high selectivity of the peptide-conjugated LTLs was confirmed by confocal imaging of SKBR-3 (HER2-positive) and MCF-7 (HER2-negative) breast cancer cell lines, illustrating its target-specific nature. The energy transfer from UCNPs to MB was verified, thus enabling the generation of reactive oxygen species upon activation with a 975 nm laser source (0.60 W cm) under 5 min continuous excitation. A significant decline in the cell viability by 95% was observed using chemo-photodynamic combinational therapy, whereas for chemo-drug alone and PDT alone, the cell proliferation declined by 77% and 84%, respectively. Furthermore, we demonstrated an improved uptake of the LTLs inside a 3D model of SKBR-3 tumor spheroids, where the spheroid cell viability was suppressed by 66% after the use of combinational therapy. Thus, our results suggest great prospective use of theranostic LTLs for breast cancer management.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr06535kDOI Listing

Publication Analysis

Top Keywords

breast cancer
16
nir-activated bioimaging
8
chemo-photodynamic therapy
8
cell viability
8
combinational therapy
8
therapy
5
ltls
5
novel anti-her2
4
anti-her2 peptide-conjugated
4
peptide-conjugated theranostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!