If life on Earth started out in geochemical environments like hydrothermal vents, then it started out from gasses like CO, N and H. Anaerobic autotrophs still live from these gasses today, and they still inhabit the Earth's crust. In the search for connections between abiotic processes in ancient geological systems and biotic processes in biological systems, it becomes evident that chemical activation (catalysis) of these gasses and a constant source of energy are key. The H-CO redox reaction provides a constant source of energy and anabolic inputs, because the equilibrium lies on the side of reduced carbon compounds. Identifying geochemical catalysts that activate these gasses en route to nitrogenous organic compounds and small autocatalytic networks will be an important step towards understanding prebiotic chemistry that operates only on the basis of chemical energy, without input from solar radiation. So, if life arose in the dark depths of hydrothermal vents, then understanding reactions and catalysts that operate under such conditions is crucial for understanding origins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802133PMC
http://dx.doi.org/10.1098/rsfs.2019.0072DOI Listing

Publication Analysis

Top Keywords

hydrothermal vents
8
constant source
8
source energy
8
catalysts autocatalysis
4
autocatalysis origin
4
origin metabolism
4
metabolism life
4
life earth
4
earth started
4
started geochemical
4

Similar Publications

Perturbations in Microbial Communities at Hydrothermal Vents of Panarea Island (Aeolian Islands, Italy).

Biology (Basel)

January 2025

Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Marine hydrothermal ecosystems represent extreme environments connected to submarine volcanic areas characterized by vents, having high temperatures and particular chemical compositions. The hydrothermal marine system of Panarea, located in one of the seven small islands belonging to the Aeolian Archipelago (southern Tyrrhenian Sea), is characterized by a range of vents exhibiting diverse physical and chemical conditions. We aimed to analyze the microbial community of a peculiar hot spring belonging to the Panarea hydrothermal field, known as "Black Point" (BP), in two separate sampling expeditions (May and August).

View Article and Find Full Text PDF

The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs spp.

View Article and Find Full Text PDF

Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.

Chin J Nat Med

January 2025

Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. Electronic address:

Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine.

View Article and Find Full Text PDF

Complete genome sequence of Vreelandella sp. SM1641, a marine exopolysaccharide-producing bacterium isolated from deep-sea hydrothermal sediment of the Southwest Indian Ocean.

Mar Genomics

March 2025

College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:

Vreelandella sp. SM1641 was isolated from the hydrothermal vent sediment of the southwest Indian Ocean at a water depth of 2519 m. The complete genome sequence of strain SM1641 was analyzed to understand its metabolic capacities and biosynthesis potential of natural products in this study.

View Article and Find Full Text PDF

High-pressure continuous culturing: life at the extreme.

Appl Environ Microbiol

January 2025

Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!