Mitochondrial dysfunction has been implicated in the early stages or progression of many renal diseases. Improving mitochondrial function and homeostasis has the potential to protect renal function. Serum- and glucocorticoid-induced kinase 1 (SGK1) is known to regulate various cellular processes, including cell survival. In this study, we intend to demonstrate the effect and molecular mechanisms of SGK1 in renal tubular cells upon oxidative stress injury and to determine whether regulation of mitochondrial function is implicated in this process. HK-2 cells were exposed to HO, and cell viability and apoptosis were dynamically detected by the CCK-8 assay and annexin-V/PI staining. The concentrations of cellular reactive oxygen species (ROS) and adenosine triphosphate (ATP) and the expression of the SGK1/GSK3/PGC-1 signaling pathway were analyzed by flow cytometry or western blot. In addition, shRNA targeting SGK1 and SB216763 were added into the culture medium before HO exposure to downregulate SGK1 and GSK3, respectively. Cell viability and mitochondrial functions, including mitochondrial membrane potential (m), Cytochrome C release, mtDNA copy number, and mitochondrial biogenesis, were examined. Protein levels and SGK1 activation were significantly stimulated by HO exposure. HK-2 cells with SGK1 inhibition were much more sensitive to HO-induced oxidative stress injury than control group cells, as they exhibited increased apoptotic cell death and mitochondrial dysfunction involving the deterioration of cellular ATP production, ROS accumulation, mitochondrial membrane potential reduction, and release of Cytochrome C into the cytoplasm. Studies on SGK1 knockdown also indicated that SGK1 is required for the induction of proteins associated with mitochondrial biogenesis, including PGC-1, NRF-1, and TFAM. Moreover, the deleterious effects of SGK1 suppression on cell apoptosis and mitochondrial function, including mitochondrial biogenesis, were related to the phosphorylation of GSK3 and partially reversed by SB216763 treatment. HO leads to SGK1 overexpression in HK-2 cells, which protects human renal tubule cells from oxidative stress injury by improving mitochondrial function and inactivating GSK3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766675 | PMC |
http://dx.doi.org/10.1155/2019/2013594 | DOI Listing |
Cell Mol Life Sci
January 2025
State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.
View Article and Find Full Text PDFBMC Biol
January 2025
Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.
Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).
Angew Chem Int Ed Engl
January 2025
National University of Singapore, Dept of Diagnostic Radiology, SINGAPORE.
Mitophagy that disrupt mitochondrial membrane potential (MMP), represents a critical focus in pharmacology. However, the discovery and evaluation of MMP-disrupting drugs are often hampered using commercially available marker molecules that target similar or identical zones. These markers can significantly interfere with, obscure, or amplify the functional effects of MMP-targeting drugs, frequently leading to clinical failures.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Indian Scientific Education and Technology Foundation, Lucknow, 226002, India. Electronic address:
Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!