Physiological brain temperature is an important determinant of brain function, and it is well established that changes in brain temperature dynamically influence hippocampal neuronal activity. We previously demonstrated that the thermosensor TRPV4 is activated at physiological brain temperature in hippocampal neurons thereby controlling neuronal excitability in vitro. Here, we examined whether TRPV4 regulates neuronal excitability through its activation by brain temperature in vivo. We locally cooled the hippocampus using our novel electrical device and demonstrated constitutive TRPV4 activation in normal mouse brain. We generated a model of partial epilepsy by utilizing kindling stimuli in the ventral hippocampus of wild type (WT) or TRPV4-deficient (TRPV4KO) mice and obtained electroencephalograms (EEG). The frequencies of epileptic EEG in WT mice were significantly larger than those in TRPV4KO mice. These results indicate that TRPV4 activation is involved in disease progression of epilepsy. We expected that disease progression would enhance hyperexcitability and lead to hyperthermia in the epileptogenic foci. To confirm this hypothesis, we developed a new device to measure exact brain temperature only in a restricted local area. From the recording results by the new device, we found that the brain temperatures in epileptogenic zones were dramatically elevated compared with normal regions. Furthermore, we demonstrated that the temperature elevation was critical for disease progression. Based on these results, we speculate that brain cooling treatment at epileptogenic foci would effectively suppress epileptic discharges through inhibition of TRPV4. Notably, the cooling treatment drastically suppressed neuronal discharges dependent on the inactivation of TRPV4.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41374-019-0335-5DOI Listing

Publication Analysis

Top Keywords

brain temperature
20
epileptogenic foci
12
trpv4 activation
12
disease progression
12
brain
9
temperature elevation
8
physiological brain
8
neuronal excitability
8
trpv4ko mice
8
cooling treatment
8

Similar Publications

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Largemouth bass (LMB, ), a commercially important farmed fish, is vulnerable to heat stress. Breeding heat-resistant LMB is highly desirable in the face of global warming. However, we still lack an efficient method to assess the heat resistance of LMB.

View Article and Find Full Text PDF

Physiological Responses to Aversive and Non-aversive Audiovisual, Audio, and Visual Stimuli.

Biol Psychol

January 2025

Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA. Electronic address:

We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli.

View Article and Find Full Text PDF

Objective: Congenital heart disease affects 1% of US births, with many babies requiring major cardiothoracic surgery under cardiopulmonary bypass (CPB), exposing the more critical patients to neurodevelopmental impairment. Optimal surgical parameters to minimize neuronal injury are unknown. We used H MRS and blood ammonia assays in a neonatal pig model of CPB to compare two approaches, complete circulatory arrest (CA) versus antegrade cerebral perfusion (ACP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!