Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation.

Proc Biol Sci

Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA.

Published: October 2019

The divergence of sexual signals is ultimately a coevolutionary process: while signals and preferences diverge between lineages, they must remain coordinated within lineages for matings to occur. Divergence in sexual signals makes a major contribution to evolving species barriers. Therefore, the genetic architecture underlying signal-preference coevolution is essential to understanding speciation but remains largely unknown. In crickets where male song pulse rate and female pulse rate preferences have coevolved repeatedly and rapidly, we tested two contrasting hypotheses for the genetic architecture underlying signal-preference coevolution: linkage disequilibrium between unlinked loci and genetic coupling (linkage disequilibrium resulting from pleiotropy of a shared locus or tight physical linkage). Through selective introgression and quantitative trait locus (QTL) fine mapping, we estimated the location of QTL underlying interspecific variation in both female preference and male pulse rate from the same mapping populations. Remarkably, map estimates of the pulse rate and preference loci are as close as 0.06 cM apart, the strongest evidence to date for genetic coupling between signal and preference loci. As the second pair of colocalizing signal and preference loci in the genome, our finding supports an intriguing pattern, pointing to a major role for genetic coupling in the quantitative evolution of a reproductive barrier and rapid speciation in . Owing to its effect on suppressing recombination, a coupled, quantitative genetic architecture offers a powerful and parsimonious genetic mechanism for signal-preference coevolution and the establishment of positive genetic covariance on which the Fisherian runaway process of sexual selection relies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834049PMC
http://dx.doi.org/10.1098/rspb.2019.1607DOI Listing

Publication Analysis

Top Keywords

genetic coupling
16
pulse rate
16
signal preference
12
genetic architecture
12
signal-preference coevolution
12
preference loci
12
genetic
9
coupling signal
8
rapid speciation
8
divergence sexual
8

Similar Publications

Background: Fibromatosis of the breast, also known as desmoid-type fibromatosis (DTF), is a rare tumor marked by the development of non-metastatic, locally aggressive tumors in breast tissue. It represents only 0.2% of all breast tumors.

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Integration of various types of omics data is an important trend in contemporary molecular oncology. In this regard, high-throughput analysis of trace and essential elements in cancer biosamples is an emerging field that has not yet been sufficiently addressed. For the first time, we simultaneously obtained gene expression profiles (RNA sequencing) and essential and trace element profiles (inductively coupled plasma mass spectrometry) for a set of human cancer samples.

View Article and Find Full Text PDF

Long-term exposure to fine particulate matter components with obesity in children and adolescents in China: The age-sex disparities and key effect modifiers.

Ecotoxicol Environ Saf

January 2025

Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China. Electronic address:

Long-term fine particulate matter (PM) exposure was associated with childhood obesity. However, the key PM components and whether PM effect may vary by obesity type, growth stage, sex, and individual/family characteristics have yet been examined. In this study, we investigated 213,907 Chinese children and adolescents aged 3-18 years in 2017-2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!