A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vapor-phase nucleation of n-pentane, n-hexane, and n-heptane: Critical cluster properties. | LitMetric

Vapor-phase nucleation of n-pentane, n-hexane, and n-heptane: Critical cluster properties.

J Chem Phys

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

Published: October 2019

The first and second nucleation theorems provide a way to determine the molecular content and excess internal energies of critical clusters, which rely solely on experimental nucleation rates measured at constant temperatures and supersaturations, respectively. Here, we report the size n and excess internal energy E(n) of n-pentane, n-hexane, and n-heptane critical clusters when particles form under the highly supersaturated conditions present in supersonic expansions. In summary, critical clusters contain from ∼2 to ∼11 molecules and exhibit the expected increase in the critical cluster size with increasing temperature and decreasing supersaturation. Surprisingly, the n values for all three alkanes appear to lie along a single line when plotted as a function of supersaturation. Within the framework of the capillarity approximation, the excess internal energies determined for the n-heptane critical clusters formed under the low temperature (∼150 K) conditions in our supersonic nozzle are reasonably consistent with those determined under higher temperature (∼250 K) conditions in the thermal diffusion cloud chamber by Rudek et al. [J. Chem. Phys. 105, 4707 (1996)].

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5123284DOI Listing

Publication Analysis

Top Keywords

critical clusters
16
n-heptane critical
12
excess internal
12
n-pentane n-hexane
8
n-hexane n-heptane
8
critical cluster
8
internal energies
8
conditions supersonic
8
critical
6
vapor-phase nucleation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!