Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The first and second nucleation theorems provide a way to determine the molecular content and excess internal energies of critical clusters, which rely solely on experimental nucleation rates measured at constant temperatures and supersaturations, respectively. Here, we report the size n and excess internal energy E(n) of n-pentane, n-hexane, and n-heptane critical clusters when particles form under the highly supersaturated conditions present in supersonic expansions. In summary, critical clusters contain from ∼2 to ∼11 molecules and exhibit the expected increase in the critical cluster size with increasing temperature and decreasing supersaturation. Surprisingly, the n values for all three alkanes appear to lie along a single line when plotted as a function of supersaturation. Within the framework of the capillarity approximation, the excess internal energies determined for the n-heptane critical clusters formed under the low temperature (∼150 K) conditions in our supersonic nozzle are reasonably consistent with those determined under higher temperature (∼250 K) conditions in the thermal diffusion cloud chamber by Rudek et al. [J. Chem. Phys. 105, 4707 (1996)].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5123284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!