The two-lane driven system is a type of important model to research some transport systems, and also a powerful tool to investigate properties of nonequilibrium state systems. This paper presents a driven bidirectional two-lane model. The dynamic characteristics of the model with periodic boundary are investigated by Monte Carlo simulation, simple mean field, and cluster mean field methods, respectively. By simulations, phase separations are observed in the system with some values of model parameters. When the phase separation does not occur, cluster mean field results are in good agreement with simulation results. According to the cluster mean field analysis and simulations, a conjecture about the condition that the phase separation happens is proposed. Based on the conjecture, the phase boundary distinguishing phase separation state and homogeneous state is determined, and a corresponding phase diagram is drawn. The conjecture is validated through observing directly the spatiotemporal diagram and investigating the coarsening process of the system by simulation, and a possible mechanism causing the phase separation is also discussed. These outcomes maybe contribute to understand deeply transport systems including the congestion and efficiency of the transport, and enrich explorations of nonequilibrium state systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.032133DOI Listing

Publication Analysis

Top Keywords

phase separation
20
cluster field
12
phase
8
driven bidirectional
8
bidirectional two-lane
8
transport systems
8
nonequilibrium state
8
state systems
8
separation
5
theoretical analysis
4

Similar Publications

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.

View Article and Find Full Text PDF

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

Metal-organic frameworks for the separation of xylene isomers.

Chem Soc Rev

January 2025

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Xylene isomers, including -xylene (X), -xylene (X), -xylene (X), and ethyl benzene (EB), are important raw materials in industry. The separation of xylene isomers has been recognized as one of the "seven chemical separations to change the world". However, because of their similar physicochemical properties, totally separating four xylene isomers has remained a big challenge until now.

View Article and Find Full Text PDF

Tunable mechanical properties of PDMS-TMPTMA microcapsules for controlled release in coatings.

Soft Matter

January 2025

School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.

Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!