Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the behavior of a symmetric exclusion process (SEP) in the presence of stochastic resetting where the configuration of the system is reset to a steplike profile with a fixed rate r. We show that the presence of resetting affects both the stationary and dynamical properties of SEPs strongly. We compute the exact time-dependent density profile and show that the stationary state is characterized by a nontrivial inhomogeneous profile in contrast to the flat one for r=0. We also show that for r>0 the average diffusive current grows linearly with time t, in stark contrast to the sqrt[t] growth for r=0. In addition to the underlying diffusive current, we identify the resetting current in the system which emerges due to the sudden relocation of the particles to the steplike configuration and is strongly correlated to the diffusive current. We show that the average resetting current is negative, but its magnitude also grows linearly with time t. We also compute the probability distributions of the diffusive current, resetting current, and total current (sum of the diffusive and the resetting currents) using the renewal approach. We demonstrate that while the typical fluctuations of both the diffusive and reset currents around the mean are typically Gaussian, the distribution of the total current shows a strong non-Gaussian behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.032136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!