Activation of Sigma 1 Receptor Extends Survival of Cones and Improves Visual Acuity in a Murine Model of Retinitis Pigmentosa.

Invest Ophthalmol Vis Sci

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.

Published: October 2019

Purpose: Retinitis pigmentosa (RP), a retinal photoreceptor degeneration, typically affects rod function and subsequently cones. Activation of sigma 1 receptor (Sig1R) has been shown to preserve cone function through 6 weeks in the rd10 mouse model of RP, when mice were treated systemically with the Sig1R ligand (+)-pentazocine (PTZ). This study determined the extent to which cone function is preserved in rd10 mice when Sig1R is activated.

Methods: Rd10 mice were administered (+)-PTZ (alternate days beginning at postnatal day [P]14) over a period of 180 days. Mouse visual function and structure were measured in vivo using optokinetic tracking response, scotopic and photopic electroretinography plus photopic assessment using "natural" noise stimuli, and optical coherence tomography (OCT). Immunofluorescent methods were used to detect cones in retinal cryosections.

Results: Visual acuity was maintained in rd10(+)-PTZ-treated mice through P56, whereas rd10 nontreated mice showed marked decline by P28. Cone responses were detected in (+)-PTZ-treated mice through P60, which were more robust when tested with natural noise stimuli; cone responses were minimal in nontreated rd10 mice. OCT revealed significantly thicker retinas in (+)-PTZ-treated rd10 mice through P60 compared to nontreated mice. Cones were detected by immunofluorescence in (+)-PTZ-treated rd10 retinas through P120.

Conclusions: The extent to which cone rescue could be sustained in (+)-PTZ-treated rd10 mice was evaluated comprehensively, showing that activation of Sig1R is associated with prolonged visual acuity, extended detection of cone function, and detection of cones in retinal histologic sections. The data reflect promising long-term neuroprotection when Sig1R is activated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808049PMC
http://dx.doi.org/10.1167/iovs.19-27709DOI Listing

Publication Analysis

Top Keywords

rd10 mice
20
visual acuity
12
cone function
12
+-ptz-treated rd10
12
mice
10
activation sigma
8
sigma receptor
8
retinitis pigmentosa
8
rd10
8
extent cone
8

Similar Publications

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.

View Article and Find Full Text PDF

Layer-specific anatomical and physiological features of the retina's neurovascular unit.

Curr Biol

January 2025

Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:

The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.

View Article and Find Full Text PDF

Background: Retinitis pigmentosa (RP), the leading cause of inherited blindness in adults, is marked by the progressive degeneration of rod photoreceptors in the retina. While gene therapy has shown promise in treating RP in patients with specific mutations, no effective therapies currently exist for the majority of patients with diverse genetic backgrounds. Additionally, no intervention can yet prevent or delay photoreceptor loss across the broader RP patient population.

View Article and Find Full Text PDF

P23H rhodopsin aggregation in the ER causes synaptic protein imbalance in rod photoreceptors.

bioRxiv

December 2024

Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States.

Rod photoreceptor neurons in the retina detect scotopic light through the visual pigment rhodopsin (Rho) in their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health. Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!