Pyrolysis of swine manure (SM) was conducted as a case study to establish an environmentally sound management of livestock manure. To build a more renewable pyrolysis platform for SM, this study selected carbon dioxide (CO) as the reaction medium. In addition, CO was used in pyrolysis of SM to restrict the formation of toxic compounds, such as benzene derivatives and polycyclic aromatic hydrocarbons (PAHs). A series of thermo-gravimetric analysis (TGA) tests was done to understand the thermolysis of SM in the CO environment. The TGA tests elucidated no occurrence of heterogeneous reactions between the SM sample and the CO. Moreover, the TGA tests of SM suggested that SM contains more volatile matter (VM) than lignocellulosic biomass. Non-catalytic transesterification of SM lipids confirmed that the dried SM sample contained 8.85 ± 0.05 wt% of lipids. This study also confirmed that the mechanistic role of CO was realized through the gas phase reactions between volatile pyrolysates evolved from the thermolysis of SM and CO. In summary, CO donates O, enhancing the generation of CO through homogeneous reactions. In parallel, this study confirmed that CO suppress dehydrogenation. Therefore, the identified gas phase reactions between volatile pyrolysates and CO led to the compositional modifications in the condensable pyrolysates. However, such mechanistic features arising from CO only initiated at ≥520 °C. To expedite the reaction kinetics of the homogeneous reaction triggered by CO, steel slag (SS) was used as a catalyst. Hence, the reaction kinetics associated with the mechanistic role of CO were substantially enhanced (up to 80%) when SS was used as a catalyst. Therefore, all experimental findings strongly suggest that CO can be utilized as a raw material in a thermo-chemical process. More importantly, all observations suggest that CO lopping can also be achieved in a thermo-chemical process. Lastly, this study shows that the high Cu content in SM was effectively immobilized through pyrolysis. Conclusively, this study experimentally proved that CO could be promising for restricting the formation of toxic pollutant in the thermo-chemical treatment in that CO offers an innovative and strategic means for controlling the ratio of C to H. Note that aromaticity and toxicity of chemical compounds are highly contingent on the ratio of C to H.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.105204DOI Listing

Publication Analysis

Top Keywords

tga tests
12
pyrolysis swine
8
swine manure
8
steel slag
8
formation toxic
8
study confirmed
8
mechanistic role
8
gas phase
8
phase reactions
8
reactions volatile
8

Similar Publications

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment.

Pharmaceutics

November 2024

Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico.

Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane-hydrazone-doxorubicin (Ad-h-Dox) prodrug.

View Article and Find Full Text PDF

Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex.

View Article and Find Full Text PDF

Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers.

Polymers (Basel)

December 2024

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.

This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!