Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance.

Plant Physiol Biochem

Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea. Electronic address:

Published: November 2019

Oxidative stress caused by reactive oxygen species (ROS) under various environmental stresses significantly reduces plant productivity. Tocopherols (collectively known as vitamin E) are a group of lipophilic antioxidants that protect cellular components against oxidative stress. Previously, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including tocopherol cyclase (IbTC). In this study, we generated transgenic sweetpotato plants overexpressing IbTC under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as TC plants) via Agrobacterium-mediated transformation to understand the function of IbTC in sweetpotato. Three transgenic lines (TC2, TC9, and TC11) with high transcript levels of IbTC were selected for further characterization. High performance liquid chromatography (HPLC) analysis revealed that α-tocopherol was the most predominant form of tocopherol in sweetpotato tissues. The content of α-tocopherol was 1.6-3.3-fold higher in TC leaves than in non-transgenic (NT) leaves. No significant difference was observed in the tocopherol content of storage roots between TC and NT plants. Additionally, compared with NT plants, TC plants showed enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses, and showed consistently higher levels of photosystem II activity and chlorophyll content, indicating abiotic stress tolerance. These results suggest IbTC as a strong candidate gene for the development of sweetpotato cultivars with increased α-tocopherol levels and enhanced abiotic stress tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2019.09.046DOI Listing

Publication Analysis

Top Keywords

abiotic stress
12
stress tolerance
12
transgenic sweetpotato
8
sweetpotato plants
8
plants overexpressing
8
tocopherol cyclase
8
oxidative stress
8
environmental stresses
8
plants
7
tocopherol
5

Similar Publications

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

No FDA-approved medications for methamphetamine (MA) use disorder (MUD) are available. Suvorexant (SUVO), a dual orexin receptor antagonist that is FDA approved for insomnia treatment, reduces MA self-administration and MA-induced reinstatement responding in preclinical studies. SUVO may also reduce MA use by targeting substance use risk factors, including insomnia, stress, cue reactivity, and craving.

View Article and Find Full Text PDF

Methamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury.

View Article and Find Full Text PDF

At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!