Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases.

Gene

Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain.

Published: January 2020

AI Article Synopsis

  • Osteoporosis linked to advanced cholestatic and end-stage liver disease is primarily caused by low bone formation and is negatively affected by lithocholic acid (LCA) and bilirubin on osteoblastic cells.
  • The study used human osteosarcoma cells (Saos-2) to analyze how LCA, bilirubin, and ursodeoxycholic acid (UDCA) affect gene expression related to bone metabolism over 2 and 24 hours.
  • Findings showed that while LCA and bilirubin up-regulated pro-apoptotic genes and down-regulated certain bone morphogenic factors, UDCA helped reverse these effects and promote the expression of beneficial bone-related genes.

Article Abstract

Osteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA (10 μM), bilirubin (50 μM) or UDCA (10 and 100 μM) at 2 and 24 h. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 μM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.144167DOI Listing

Publication Analysis

Top Keywords

pathogenesis osteoporosis
8
liver diseases
8
cholestatic end-stage
8
end-stage liver
8
lca bilirubin
8
osteoblastic cells
8
partially completely
8
completely neutralized
8
udca 100 μm
8
bglap osteocalcin
8

Similar Publications

Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems.

View Article and Find Full Text PDF

Background: Osteoporosis and sarcopenia frequently occur in patients with end-stage renal disease undergoing hemodialysis (HD), and depression is also a common mental health issue in this population. Despite the prevalence of these conditions, the interrelationships among them remain poorly understood in HD patients.

Methods: In this multicenter cross-sectional study, 858 HD patients from 7 dialysis centers were recruited.

View Article and Find Full Text PDF

Osteoporosis and vascular calcification are chronic metabolic diseases threatening the health of aging people. The incidence of osteoporosis and vascular calcification increases year by year, and has drawn much attention from the scientific and clinical area. Many studies have found that osteoporosis and vascular calcification are not completely independent, but there are close correlations between them in the pathogenesis and underlying mechanisms.

View Article and Find Full Text PDF

Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent mA regulation.

Cell Mol Life Sci

January 2025

The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.

View Article and Find Full Text PDF

β-Sitosterol modulates osteogenic and adipogenic balance in BMSCs to suppress osteoporosis via regulating mTOR-IMP1-Adipoq axis.

Phytomedicine

January 2025

Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China. Electronic address:

Background: Osteoporosis (OP) is a prevalent global health concern, impacting millions of individuals, especially the elderly. The etiology of senile OP is associated with the imbalance of osteogenic and adipogenic differentiation in the bone marrow mesenchymal stem cells (BMSCs). The imbalance of BMSCs differentiation fate will leading to bone loss and lipids accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!