Sarcoma is a rare and recalcitrant malignancy. Although immune and novel targeted therapies have been tested on many cancer types, few sarcoma patients have had durable responses with such therapy. Doxorubicin and cisplatinum are still first-line chemotherapy after four decades. Our laboratory has established the patient-derived orthotopic xenograft (PDOX) model using surgical orthotopic implantation (SOI). Many promising results have been obtained using the sarcoma PDOX model for identifying effective approved drugs and experimental therapeutics, as well as combinations of them for individual patients. In this review, we present our laboratory's experience with PDOX models of sarcoma, and the ability of the PDOX models to identify effective approved agents, as well as experimental therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2019.10.028 | DOI Listing |
Breast Cancer (Dove Med Press)
January 2025
Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
Purpose: The high mortality rate of breast cancer motivates researchers to search for effective treatments. Due to their ability to simulate human conditions, xenograft models such as CDX (Cell line-Derived Xenografts) and PDX (Patient-Derived Xenografts) have gained popularity in pre-clinical research. The choice of xenograft technique is influenced by the type of tumor employed, particularly in more aggressive tumor models like TNBC with metastases.
View Article and Find Full Text PDFTransl Oncol
January 2025
Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
mRNA delivery offers new opportunities for disease treatment by directing cells to produce therapeutic proteins. However, designing highly stable mRNAs with programmable cell type-specificity remains a challenge. To address this, we measured the regulatory activity of 60,000 5' and 3' untranslated regions (UTRs) across six cell types and developed PARADE (Prediction And RAtional DEsign of mRNA UTRs), a generative AI framework to engineer untranslated RNA regions with tailored cell type-specific activity.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!