Crizotinib is an oral small-molecule tyrosine kinase inhibitor targeting anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) and MET proto-oncogene, receptor tyrosine kinase (MET). Unfortunately, hepatotoxicity is a serious limitation in its clinical application, and the reason remains largely unknown. In this study, we tested the effect of crizotinib in human hepatocyte cell line HL-7702 and human primary hepatocytes, and the results showed that crizotinib treatment caused hepatocyte damage, suggesting that crizotinib induced liver injury by causing hepatocyte death, consistent with the clinical cases. Mechanistically, crizotinib induced hepatocyte death via the apoptotic pathway, and cleaved PARP (c-PARP) was observed as a signaling protein. Moreover, mitochondrial membrane potential (MMP) decrease contributed to crizotinib-induced hepatocyte apoptosis accompanied by hepatocyte DNA damage and reactive oxygen species (ROS) generation. Importantly, crizotinib induced hepatocyte apoptosis independent of its targets, ALK, ROS1 and MET. In conclusion, our data showed that crizotinib induced liver injury through hepatocyte death via the apoptotic pathway which was independent of ALK, ROS1 and MET. And we also found that MMP decrease, DNA damage and ROS generation were involved in the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2019.114768 | DOI Listing |
Introduction: Lung cancer ranks among the foremost causes of mortality associated with cancer. Ensartinib is a highly effective oral anaplastic lymphoma kinase (ALK) inhibitor utilized in the treatment of ALK-positive lung adenocarcinoma. This report presents a case of acute renal failure attributed to the administration of ensartinib.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.
View Article and Find Full Text PDFTransl Cancer Res
November 2024
Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Characterized by its high mortality and easy recurrence, hepatocellular carcinoma (HCC) poses significant clinical challenges. The association between copper metabolism and development of cancer has been identified. However, the underlying mechanisms of copper metabolism-related long non-coding RNAs (CMRLs) in HCC remain elusive.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
Targeted protein degradation has emerged as a novel therapeutic paradigm in drug discovery. Despite the FDA approval of anaplastic lymphoma kinase (ALK) inhibitors, the pursuit of compounds with enhanced potency and prolonged efficacy remains crucial to mitigate inevitable adverse effects. In this context, we endeavored to develop ALK degraders utilizing FDA-approved ALK inhibitors-crizotinib, ceritinib, brigatinib, and alectinib-as ALK binders, along with 4-methoxyphenylfumarate as a covalent handle to bind to RNF126 E3 ligase.
View Article and Find Full Text PDFToxicology
December 2024
Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland. Electronic address:
Drug-induced gastrointestinal toxicity is a frequent clinical adverse event that needs to be carefully monitored and managed to ensure patient compliance. While preclinical assessment of drug-induced gastrointestinal toxicity mostly relies on animal experimentation, intestinal organoids have gained increasing attention to identify gastrointestinal toxicants in vitro. Nonetheless, current in vitro protocols primarily assess structural alterations induced by drugs, whereas gastrointestinal adverse events can often stem from functional disturbances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!