Polaritons are compositional light-matter quasiparticles that have enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Recently, plasmon-exciton polaritons (plexcitons) have been realized in hybrid material systems composed of transition metal dichalcogenide (TMDC) materials and metal nanoparticles, expanding polaritonic concepts to room temperature and nanoscale systems that also benefit from the exotic properties of TMDC materials. Despite the enormous progress in understanding TMDC-based plexcitons using optical-based methods, experimental evidence of plexcitons formation has remained indirect and mapping their nanometer-scale characteristics has remained an open challenge. Here, we demonstrate that plexcitons generated by a hybrid system composed of an individual silver nanoparticle and a few-layer WS flake can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Experimental anticrossing measurements using the absorption-dominated extinction signal provide the ultimate evidence for plexciton hybridization in the strong coupling regime. Spatially resolved EELS maps reveal the existence of unexpected nanoscale variations in the deep-subwavelength nature of plexcitons generated by this system. These findings pioneer new possibilities for in-depth studies of the local atomic structure dependence of polariton-related phenomena in TMDC hybrid material systems with nanometer spatial resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b03534DOI Listing

Publication Analysis

Top Keywords

plasmon-exciton polaritons
8
hybrid material
8
material systems
8
tmdc materials
8
plexcitons generated
8
nanometer spatial
8
spatial resolution
8
plexcitons
5
visualizing spatial
4
spatial variations
4

Similar Publications

Article Synopsis
  • This study explores the strong coupling between surface plasmon polaritons and excitons to enhance light-matter interactions in plasmonic-excitonic structures.
  • Researchers observed significant changes in fluorescence lifetimes and a reduction in photobleaching effects using a layered structure of silver, gold, and Rhodamine 6G dye, demonstrating a Rabi splitting of around 90 meV.
  • The findings highlight the importance of strong coupling in maintaining fluorescence stability and open up possibilities for advanced quantum nanophotonic devices.
View Article and Find Full Text PDF

Strong coupling between light and matter forms hybrid states, such as exciton-polaritons, which are crucial for advancements in quantum science and technology. Plasmonic metal nanoparticles, with their ultrasmall mode volumes, are effective for generating these states, but the coupling strength is often limited by surface saturation of excitonic materials. Additionally, cubic nanoparticles, which can generate strong local fields, have not been systematically explored.

View Article and Find Full Text PDF

Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-.

View Article and Find Full Text PDF

When an organic molecule is placed inside a plasmonic cavity formed by two metallic nanoparticles (MNP) under illumination, the electronic excitations of the molecule couple to the plasmonic electromagnetic modes of the cavity, inducing new hybrid light-matter states called polaritons. Atomistic ab initio methods accurately describe the coupling between MNPs and molecules at the nanometer scale and allow us to analyze how atomistic features influence the interaction. In this work, we study the optical response of a porphine molecule coupled to a silver nanoparticle dimer from first principles, within the linear-response time-dependent density functional theory framework, using the recently developed Python Numeric Atomic Orbitals implementation to compute the optical excitations.

View Article and Find Full Text PDF

Phosphorescent organic light-emitting diodes (PHOLEDs) feature high efficiency, brightness and colour tunability suitable for both display and lighting applications. However, overcoming the short operational lifetime of blue PHOLEDs remains one of the most challenging high-value problems in the field of organic electronics. Their short lifetimes originate from the annihilation of high-energy, long-lived blue triplets that leads to molecular dissociation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!