Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate, traceable quantification of ribonucleotide or deoxyribonucleotide oligomers is achievable using acid hydrolysis and isotope dilution mass spectrometry (ID-MS). In this work, formic acid hydrolysis is demonstrated to generate stoichiometric release of nucleobases from intact oligonucleotides, which then can be measured by ID-MS, facilitating true and precise absolute quantification of RNA, short linearized DNA, or genomic DNA. Surrogate nucleobases are quantified with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow, using multiple reaction monitoring (MRM). Nucleobases were chromatographically resolved using a novel cation-exchange separation, incorporating a pH gradient. Trueness of this quantitative assay is estimated from agreement among the surrogate nucleobases and by comparison to concentrations provided for commercial materials or Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Comparable concentration estimates using NanoDrop spectrophotometry or established from droplet-digital polymerase chain reaction (ddPCR) techniques agree well with the results. Acid hydrolysis-ID-LC-MS/MS provides excellent quantitative selectivity and accuracy while enabling traceability to mass unit. Additionally, this approach can be uniquely useful for quantifying modified nucleobases or mixtures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337568 | PMC |
http://dx.doi.org/10.1021/acs.analchem.9b03625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!