Photophysics Modulation in Photoswitchable Metal-Organic Frameworks.

Chem Rev

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

Published: August 2020

In this Review, we showcase the upsurge in the development and fundamental photophysical studies of more than 100 metal-organic frameworks (MOFs) as versatile stimuli-responsive platforms. The goal is to provide a comprehensive analysis of the field of photoresponsive MOFs while delving into the underlying photophysical properties of various classes of photochromic molecules including diarylethene, azobenzene, and spiropyran as well as naphthalenediimide and viologen derivatives integrated inside a MOF matrix as part of a framework backbone, as a ligand side group, or as a guest. In particular, the geometrical constraints, photoisomerization rates, and electronic structures of photochromic molecules integrated inside a rigid MOF scaffold are discussed. Thus, this Review reflects on the challenges and opportunities of using photoswitchable MOFs in next-generation multifunctional stimuli-responsive materials while highlighting their use in optoelectronics, erasable inks, or as the next generation of sensing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.9b00350DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
photochromic molecules
8
integrated inside
8
photophysics modulation
4
modulation photoswitchable
4
photoswitchable metal-organic
4
frameworks review
4
review showcase
4
showcase upsurge
4
upsurge development
4

Similar Publications

The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.

View Article and Find Full Text PDF

Experimental and Theoretical Study of Two 3D Difunctional Electrocatalytic Hybrid Vanadate-Containing Metal-Organic Motifs.

Inorg Chem

January 2025

Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.

Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.

View Article and Find Full Text PDF

Identical Fe-N Sites with Different Reactivity: Elucidating the Effect of Support Curvature.

ACS Appl Mater Interfaces

January 2025

CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.

Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N single-atom sites, where the metal-organic structure is modulated by 0.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Exploring Supramolecular Frustrated Lewis Pairs.

Chempluschem

January 2025

Keele University, School of Chemical & Physical Sciences, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Frustrated Lewis pairs (FLPs) have rapidly become one of the key metal-free catalysts for a variety of chemical transformations. Embedding these catalysts within a supramolecular assembly can offer improvements to factors such as recyclability and selectivity. In this review we discuss advances in this area, covering key supramolecular assemblies such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), polymers and macrocycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!