Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of donor-acceptor-donor triazine-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain highly efficient blue-emitting OLEDs with non-doped emitting layers (EMLs). The targeted molecules use a triazine core as the electron acceptor, and a benzene ring as the conjugated linker with different electron donors to alternate the energy level of the HOMO to further tune the emission color. The introduction of long alkyl chains on the triazine core inhibits the unwanted intermolecular D-D/A-A-type π-π interactions, resulting in the intermolecular D-A charge transfer. The weak aggregation-caused quenching (ACQ) effect caused by the suppressed intermolecular D-D/A-A-type π-π interaction further enhances the emission. The crowded molecular structure allows the electron donor and acceptor to be nearly orthogonal, thereby reducing the energy gap between triplet and singlet excited states (ΔE ). As a result, blue-emitting devices with TH-2DMAC and TH-2DPAC non-doped EMLs showed satisfactory efficiencies of 12.8 % and 15.8 %, respectively, which is one of the highest external quantum efficiency (EQEs) reported for blue TADF emitters (λ <475 nm), demonstrating that our tailored molecular designs are promising strategies to endow OLEDs with excellent electroluminescent performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201904411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!