Tex10 promotes stemness and EMT phenotypes in esophageal squamous cell carcinoma via the Wnt/β‑catenin pathway.

Oncol Rep

Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.

Published: December 2019

A previous study by our group suggested that testis expressed 10 (Tex10) contributes to tumor progression by promoting stem cell‑like features in hepatocellular carcinoma. However, the relevance of pluripotency factor Tex10 in esophageal squamous cell carcinoma (ESCC) has remained elusive. The objective of the present study was to investigate the role of Tex10 in ESCC. For this purpose, the mRNA and protein expression of Tex10 was detected by reverse transcription‑quantitative PCR, western blot analysis and immunohistochemistry. In a loss‑of‑function experiment, EC109 cells were transfected with lentiviral vectors containing Tex10 short hairpin RNA or negative control. Cell proliferation was assessed using a Cell Counting kit‑8, and flow cytometry was used to analyze apoptosis and the cell cycle. Transwell assays were employed to examine the migratory and invasive capacity, and a sphere formation assay was performed to assess the clonogenicity of the EC109 cells. The results revealed that the elevated expression of Tex10 was positively associated with malignancy and with epithelial‑mesenchymal transition (EMT)‑associated mesenchymal markers in human ESCC specimens. The knockdown of Tex10 led to the inhibition of cell proliferation, the induction of apoptosis and cell cycle arrest, and decreased the stemness, migratory and invasive capacity of the EC109 cells. Furthermore, the silencing of Tex10 enhanced the sensitivity of the ESCC cells to 5‑fluorouracil. In addition, the present study revealed that Tex10 plays an essential role in regulating EMT via the activation of Wnt/β‑catenin signaling. On the whole, the findings of the present study suggest that the downregulation of Tex10 in ESCC specimens is significantly associated with tumor malignancy, and that Tex10 promotes stem cell‑like features and induces the EMT of ESCC cells through the enhancement of Wnt/β‑catenin signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859441PMC
http://dx.doi.org/10.3892/or.2019.7376DOI Listing

Publication Analysis

Top Keywords

tex10
12
ec109 cells
12
tex10 promotes
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
stem cell‑like
8
cell‑like features
8
tex10 escc
8
expression tex10
8

Similar Publications

Prognostic DNA mutation and mRNA expression analysis of perineural invasion in oral squamous cell carcinoma.

Sci Rep

January 2024

Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

This study analyzed oral squamous cell carcinoma (OSCC) genomes and transcriptomes in relation to perineural invasion (PNI) and prognosis using Cancer Genome Atlas data and validated these results with GSE41613 data. Gene set enrichment analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes were conducted. We identified 22 DNA mutations associated with both overall survival (OS) and PNI.

View Article and Find Full Text PDF

Testis expression 10 (Tex10) is reported to be associated with tumorigenesis in several types of cancer types, but its role in hepatocellular carcinoma (HCC) metastasis has not been investigated. In this study, the expression of Tex10 in the HCC cell line and tissue microarray was determined by Western blot and immunohistochemistry (IHC), respectively. RNA sequencing-based transcriptome analysis was performed to identify the Tex10-mediated biological process.

View Article and Find Full Text PDF

Background: Infertility affects around 15% of all couples worldwide and is increasingly linked to variants in genes specifically expressed in the testis. Well-established causes of male infertility include pathogenic variants in the genes TEX11, TEX14, and TEX15, while few studies have recently reported variants in TEX13B, TEX13C, FAM9A (TEX39A), and FAM9B (TEX39B).

Objectives: We aimed at screening for novel potential candidate genes among the human TEX ("testis expressed") genes as well as verifying previously described disease associations in this set of genes.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Oncogenic PELP1 is frequently overexpressed in TNBC, and it has been demonstrated that PELP1 signaling is essential for TNBC progression. The therapeutic utility of targeting PELP1 in TNBC, however, remains unknown.

View Article and Find Full Text PDF

The pluripotency factor Tex10 finetunes Wnt signaling for PGC and male germline development.

bioRxiv

February 2023

Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032.

Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!